DOI QR코드

DOI QR Code

Calcium annealing approach to control of surface groups and formation of oxide in Ti3C2Tx MXene

  • Jung-Min Oh (R&D center, INNOMXENE Co.,Ltd.) ;
  • Su Bin Choi (Department of Smart Fab Technology, Sungkyunkwan University) ;
  • Taeheon Kim (School of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jikwang Chae (R&D center, INNOMXENE Co.,Ltd.) ;
  • Hyeonsu Lim (Department of Strategy Planning, Jeonbuk Institute of Automotive Convergence Technology) ;
  • Jae-Won Lim (School of Advanced Materials Engineering, Jeonbuk National University) ;
  • In-Seok Seo (School of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jong-Woong Kim (Department of Smart Fab Technology, Sungkyunkwan University)
  • Received : 2021.07.26
  • Accepted : 2023.03.07
  • Published : 2023.07.25

Abstract

Ti3C2Tx MXene, a 2D material, is known to exhibit unique characteristics that are strongly dependent on surface termination groups. Here, we developed a novel annealing approach with Ca as a reducing agent to simultaneously remove F and O groups from the surface of multilayered MXene powder. Unlike H2 annealing that removes F effectively but has difficulty in removing O, annealing with Ca effectively removed both O and F. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy revealed that the proposed approach effectively removed F and O from the MXene powder. The results of O/N analyses showed that the O concentration decreased by 57.5% (from 2.66 to 1.13 wt%). In addition, XPS fitting showed that the volume fraction of metal oxides (TiO2 and Al2O3) decreased, while surface termination groups (-O and -OH) were enhanced, which could increase the hydrophilic and adsorption properties of the MXene. These findings suggest that when F and O are removed from the MXene powder, the interlayer spacing of its lattice structure increases. The proposed treatment also resulted in an increase in the specific surface area (from 5.17 to 10.98 m2/g), with an increase in oxidation resistance temperature in air from ~436 to ~667 ℃. The benefits of this novel technology were verified by demonstrating the significantly improved cyclic charge-discharge characteristics of a lithium-ion battery with a Ca-treated MXene electrode.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) grants (Number 2020M3H4A3081895, 2022R1A2C1010353 and RS-2023-00247545) funded by the Korean government (MSIP). Further support was provided by the Industry Technology R&D program (20006511), funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. Ahn, S., Han, T.H., Maleski, K., Song, J., Kim, Y.H., Park, M.H., Zhou, H., Yoo, S., Gogotsi, Y., Lee, T.W. (2020), "A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes", Adv. Mater., 32, 2000919. https://doi.org/10.1002/adma.202000919.
  2. Chen, J., Li, Z., Ni, F., Ouyang, W., Fang, X. (2020), "Bioinspired transparent MXene electrodes for flexible UV photodetectors", Mater. Horizons, 7, 1828-1833. https://doi.org/10.1039/d0mh00394h.
  3. Choi, S.H., Jung, K.Y., Kang, Y.C. (2015), "Amorphous GeOx-coated reduced graphene oxide balls with sandwich structure for long-life lithium-ion batteries", ACS Appl. Mater. Interf., 7, 13952-13959. https://doi.org/10.1021/acsami.5b02846.
  4. Cai, M., Feng, P., Yan, H., Li, Y., Song, S., Li, W., Li, H., Zhu, M. (2022), "Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection", J. Mater. Sci., 116, 151-160. https://doi.org/10.1016/j.jmst.2021.11.026.
  5. Cai, M., Fan, X., Yan, H., Li, Y., Song, S., Li, W., Li. H., Lu. Z., Zhu, M. (2021), "In situ assemble Ti3C2Tx MXene@MgAl-LDH heterostructure towards anticorrosion and antiwear application", Chem. Eng. J., 419, 130050. https://doi.org/10.1016/j.cej.2021.130050.-2.
  6. Cai, M., Yan, H., Song, S., He, D., Lin, Q., Li, W., Fan, X., Zhu, M. (2022), "State-of-the-art progresses for Ti3C2Tx MXene reinforced polymer composites in corrosion and tribology aspects", Adv. Colloid Interf. Sci., 309, 102790. https://doi.org/10.1016/j.cis.2022.102790.-3.
  7. Dall'Agnese, Y., Lukatskaya, M.R., Cook, K.M., Taberna, P.L., Gogotsi, Y., Simon, P. (2014), "high capacitance of surface-modified 2D titanium carbide in acidic electrolyte", Electrochem. Commun., 48, 118-122. https://doi.org/10.1016/j.elecom.2014.09.002.
  8. Dong, Y., Zheng, S., Qin, J., Zhao, X., Shi, H., Wang, X., Chen, J., Wu, Z.S. (2018), "All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-Density Li-S batteries", ACS Nano, 12, 2381-2388. https://doi.org/10.1021/acsnano.7b07672.
  9. Fan, X., Yan, H., Cai, M., Song, S., Huang, Y., Zhu, M. (2022), "Achieving parallelly-arranged Ti3C2Tx in epoxy coating for anti-corrosive/wear high-efficiency protection", Compos. B. Eng., 231, 109581. https://doi.org/10.1016/j.compositesb.2021.109581.
  10. Fan, X., Yang, Y., Shi, X., Liu, Y., Li, H., Liang, J., Chen, Y. (2020), "A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance", Adv. Funct. Mater., 30, 2007110. https://doi.org/10.1002/adfm.202007110.
  11. Fan, Z., Wang, Y., Xie, Z., Xu, X., Yuan, Y., Cheng, Z., Liu, Y. (2018), "A nanoporous MXene film enables flexible supercapacitors with high energy storage", Nanoscale, 10, 9642-9652. https://doi.org/10.1039/c8nr01550c.
  12. Feng, P., Ren, Y., Li, Y., He, J., Zhao, Z., Ma, X., Fan, X., Zhu, M. (2022), "Synergistic lubrication of few-layer Ti3C2Tx/MoS2 heterojunction as a lubricant additive", Friction, 10, 2018-2032. https://doi.org/10.1007/s40544-021-0568-3.
  13. Gogotsi, Y., Anasori, B. (2019), "The Rise of MXenes", ACS Nano, 13, 8491-8494. https://doi.org/10.1021/acsnano.9b06394.
  14. Hu, M., Hu, T., Li, Z., Yang, Y., Cheng, R., Yang, J., Cui, C., Wang, X. (2018), "Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2 Tx MXene", ACS Nano, 12, 3578-3586. https://doi.org/10.1021/acsnano.8b00676.
  15. Huang, Y., Yang, H., Zhang, Y., Zhang, Y., Wu, Y., Tian, M., Chen, P., Trout, R., Ma, Y., Wu, T.H., Wu, Y., Liu, N. (2019), "A Safe and Fast-Charging Lithium-Ion Battery Anode Using MXene Supported Li3VO4", J. Mater. Chem. A, 7, 11250-11256. https://doi.org/10.1039/c9ta02037c.
  16. Hwang, S.K., Kang, S. M., Rethinasabapathy, M., Roh, C., Huh, Y.S. (2020), "MXene: An emerging two-dimensional layered material for removal of radioactive pollutants", Chem. Eng. J., 397, 125428. https://doi.org/10.1016/j.cej.2020.125428.
  17. Ihsanullah, I. (2020), "Potential of MXenes in water desalination: Current status and perspectives", Nano-Micro Lett., 12, 72. https://doi.org/10.1007/s40820-020-0411-9.
  18. Iqbal, A., Sambyal, P., Koo, C.M. (2020), "2D MXenes for Electromagnetic Shielding: A Review", Adv. Funct. Mater., 30, 2000883. https://doi.org/10.1002/adfm.202000883.
  19. Jiang, Q., Kurra, N., Alhabeb, M., Gogotsi, Y., Alshareef, H. N. (2018), "All pseudocapacitive MXene-RuO2 asymmetric supercapacitors", Adv. Energy Mater., 8, 1703043. https://doi.org/10.1002/aenm.201703043.
  20. Kong, F., He, X., Liu, Q., Qi, X., Zheng, Y., Wang, R., Bai, Y. (2018), "Improving the electrochemical properties of MXene Ti3C2 multilayer for Li-Ion batteries by vacuum calcination", Electrochim. Acta, 265, 140-150. https://doi.org/10.1016/j.electacta.2018.01.196.
  21. Lee, Y., Kim, S.J., Kim, Y.J., Lim, Y., Chae, Y., Lee, B.J., Kim, Y.T., Han, H., Gogotsi, Y., Ahn, C.W. (2020), "Oxidation-Resistant Titanium Carbide MXene Films", J. Mater. Chem. A, 8, 573-581. https://doi.org/10.1039/c9ta07036b.
  22. Liu, J., Jiang, X., Zhang, R., Zhang, Y., Wu, L., Lu, W., Li, J., Li, Y., Zhang, H. (2019), "MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood", Adv. Funct. Mater., 29, 1807326. https://doi.org/10.1002/adfm.201807326.
  23. Lu, M., Li, H., Han, W., Chen, J., Shi, W., Wang, J., Meng, X. M., Qi, J., Li, H., Zhang, B., Zhang, W., Zheng, W. (2019), "2D Titanium Carbide (MXene) electrodes with lower-f surface for high performance lithium-ion batteries", J. Energy Chem., 31, 148-153. https://doi.org/10.1016/j.jechem.2018.05.017.
  24. Lv, D., Gordin, M.L., Yi, R., Xu, T., Song, J., Jiang, Y. B., Choi, D., Wang, D. (2014), "GeOx/reduced graphene oxide composite as an anode for li-ion batteries: Enhanced capacity via reversible utilization of Li2O along with improved rate performance", Adv. Funct. Mater., 24, 1059-1066. https://doi.org/10.1002/adfm.201301882.
  25. Malik, R. (2018), "Maxing out water desalination with MXenes", Joule, 2, 591-593. https://doi.org/10.1016/j.joule.2018.04.001.
  26. Munir, S., Rasheed, A., Rasheed, T., Ayman, I., Ajmal, S., Rehman, A., Shakir, I., Agboola, P.O., Warsi, M.F. (2020), "Exploring the influence of critical parameters for the effective synthesis of high-quality 2D MXene", ACS Omega, 5, 26845-26854. https://doi.org/10.1021/acsomega.0c03970.
  27. Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M. W. (2011), "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2", Adv. Mater., 23, 4248-4253. https://doi.org/10.1002/adma.201102306.
  28. Natu, V., Clites, M., Pomerantseva, E., Barsoum, M.W. (2018), "Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-Ion battery anodes", Mater. Res. Lett., 6, 230-235. https://doi.org/10.1080/21663831.2018.1434249.
  29. Nejadi, M.M., Mohammadimehr, M., Mehrabi, M. (2021), "Free vibration and buckling of functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. http://doi.org/10.12989/anr.2021.10.6.539.
  30. Oh, J.M., Kwon, H., Kim, W., Lim, J.W. (2014), "Oxygen behavior during non-contact deoxidation of titanium powder using calcium vapor", Thin Solid Films, 551, 98-101. https://doi.org/10.1016/j.tsf.2013.11.076.
  31. Oh, J.M., Lee, B.K., Suh, C.Y., Cho, S.W., Lim, J.W. (2012), "Preparation method of Ti powder with oxygen concentration of <1000 Ppm using Ca", Powder Metall., 55, 402-404. https://doi.org/10.1179/1743290112Y.0000000013.
  32. Oh, J.M., Roh, K.M., Lee, B.K., Suh, C.Y., Kim, W., Kwon, H., Lim, J.W. (2014), "Preparation of low oxygen content alloy powder from Ti binary alloy scrap by hydrogenation-dehydrogenation and deoxidation process", J. Alloys Compd., 593, 61-66. https://doi.org/10.1016/j.jallcom.2014.01.033.
  33. Peng, C., Wei, P., Chen, X., Zhang, Y., Zhu, F., Cao, Y., Wang, H., Yu, H., Peng, F. (2018), "a hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance", Ceram. Int., 44, 18886-18893. https://doi.org/10.1016/j.ceramint.2018.07.124.
  34. Rakhi, R.B., Ahmed, B., Hedhili, M.N., Anjum, D.H., Alshareef, H.N. (2015), "Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications", Chem. Mater., 27, 5314-5323. https://doi.org/10.1021/acs.chemmater.5b01623.
  35. Ramirez-Gonzalez, D., Cruz-Rivera, J.J., Tiznado, H., Rodriguez, A.G., Guillen-Escamilla, I., Zamudio-Ojeda, A. (2020), "Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ", Adv. Nano Res., 9(1), 25-32. https://doi.org/10.12989/anr.2020.9.1.025.
  36. Sarycheva, A., Makaryan, T., Maleski, K., Satheeshkumar, E., Melikyan, A., Minassian, H., Yoshimura, M., Gogotsi, Y. (2017), "Two-Dimensional titanium carbide (MXene) as surface-enhanced raman scattering substrate", J. Phys. Chem. C, 121, 19983-19988. https://doi.org/10.1021/acs.jpcc.7b08180.
  37. Scheibe, B., Kupka, V., Peplinska, B., Jarek, M., Tadyszak, K. (2019), "The influence of oxygen concentration during MAX phases (Ti3AlC2) preparation on the ΑAl2O3 microparticles content and specific surface area of multilayered MXenes (Ti3C2Tx)", Materials, 12, 353. https://doi.org/10.3390/ma12030353.
  38. Schultz, T., Frey, N.C., Hantanasirisakul, K., Park, S., May, S.J., Shenoy, V.B., Gogotsi, Y., Koch, N. (2019), "Surface termination dependent work function and electronic properties of Ti3C2Tx MXene", Chem. Mater., 31, 6590-6597. https://doi.org/10.1021/acs.chemmater.9b00414.
  39. Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Hong, S.M., Koo, C.M., Gogotsi, Y. (2016), "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)", Science, 353, 1137-1140. https://doi.org/10.1126/science.aag2421.
  40. Shao, M., Yang, M., Shao, Y., Chai, J., Qu, Y., Yang, M., Wang, Z., Ip, W.F., Kwok, C.T., Shi, X., Lu, Z., Wang, S., Wang, X., Pan, H. (2017), "Synergistic Effect of 2D Ti2C and G-C3N4 for efficient photocatalytic hydrogen production", J. Mater. Chem. A, 5, 16748-16756. https://doi.org/10.1039/c7ta04122e.
  41. Shen, C., Wang, L., Zhou, A., Zhang, H., Chen, Z., Hu, Q., Qin, G. (2017), "MoS2-decorated Ti3C2 MXene nanosheet as anode material in lithium-ion batteries", J. Electrochem. Soc., 164, A2654-A2659. https://doi.org/10.1149/2.1421712jes.
  42. Son, Y., Park, M., Son, Y., Lee, J.S., Jang, J.H., Kim, Y., Cho, J. (2014), "Quantum confinement and its related effects on the critical size of GeO2 nanoparticles anodes for lithium batteries", Nano Lett., 14, 1005-1010. https://doi.org/10.1021/nl404466v.
  43. Wang, Y., Li, Y., Qiu, Z., Wu, X., Zhou, P., Zhou, T., Zhao, J., Miao, Z., Zhou, J., Zhuo, S. (2018), "Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries", J. Mater. Chem. A, 6, 11189-11197. https://doi.org/10.1039/c8ta00122g.
  44. Wen, Y., Rufford, T. E., Chen, X., Li, N., Lyu, M., Dai, L., Wang, L. (2017), "Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors", Nano Energy, 38, 368-376. https://doi.org/10.1016/j.nanoen.2017.06.009.
  45. Xiang, Q., Ma, X., Zhang, D., Zhou, H., Liao, Y., Zhang, H., Xu, S., Levchenko, I., Bazaka, K. (2019), "Interfacial modification of titanium dioxide to enhance photocatalytic efficiency towards H2 production", J. Colloid Interface Sci., 556, 376-385. https://doi.org/10.1016/j.jcis.2019.08.033.
  46. Yan, H., Fan, X., Cai, M., Song, S., Zhu, M. (2021), "Amino-functionalized Ti3C2Tx loading ZIF-8 nanocontainer@benzotriazole as multifunctional composite filler towards self-healing epoxy coating", J. Colloid Interface Sci., 602, 131-145. https://doi.org/10.1016/j.jcis.2021.06.004.
  47. Yan, H., Zhang, L., Li, H., Fan, X., Zhu, M. (2020), "Towards high-performance additive of Ti3C2/graphene hybrid with a novel wrapping structure in epoxy coating", Carbon, 157, 217-233. https://doi.org/10.1016/j.carbon.2019.10.034.
  48. Yun, T., Kim, H., Iqbal, A., Cho, Y.S., Lee, G.S., Kim, M.K., Kim, S.J., Kim, D., Gogotsi, Y., Kim, S.O., Koo, C.M. (2020), "Electromagnetic shielding of monolayer MXene assemblies", Adv. Mater., 32, 1906769. https://doi.org/10.1002/adma.201906769.
  49. Zhang, C.J., Anasori, B., Seral-Ascaso, A., Park, S.H., McEvoy, N., Shmeliov, A., Duesberg, G.S., Coleman, J.N., Gogotsi, Y., Nicolosi, V. (2017), "Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance", Adv. Mater., 29, 1702678. https://doi.org/10.1002/adma.201702678.
  50. Zhang, C.J., Nicolosi, V. (2019), "Graphene and MXene-Based transparent conductive electrodes and supercapacitors", Energy Storage Mater., 16, 102-125. https://doi.org/10.1016/j.ensm.2018.05.003.
  51. Zhu, M., Huang, Y., Deng, Q., Zhou, J., Pei, Z., Xue, Q., Huang, Y., Wang, Z., Li, H., Huang, Q., Zhi, C. (2016), "Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene", Adv. Energy Mater., 6, 1600969. https://doi.org/10.1002/aenm.201600969.