Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.3.291

Hydrogen-bonded clusters in transformed Lewis acid to new Brønsted acid over WOx/SiO2 catalyst  

Boonpai, Sirawat (Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University)
Wannakao, Sippakorn (SCG Chemicals, Co., Ltd.)
Panpranot, Joongjai (Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University)
Praserthdam, Supareak (Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University)
Chirawatkul, Prae (Synchrotron Light Research Institute (Public Organization) 111 University Avenue)
Praserthdam, Piyasan (Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University)
Publication Information
Advances in nano research / v.12, no.3, 2022 , pp. 291-300 More about this Journal
Abstract
The behavior of hydrogen species on the surface of the catalyst during the Lewis acid transformation to form Brønsted acid sites over the spherical silica-supported WOx catalyst was investigated. To understand the structure-activity relationship of Lewis acid transformation and hydrogen bonding interactions, we explore the potential of using the in situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) with adsorbed ammonia and hydrogen exposure. From the results of in situ DRIFTS measurements, Lewis acid sites on surface catalysts were transformed into new Brønsted acid sites upon hydrogen exposure. The adsorbed NH3 on Lewis acid sites migrated to Brønsted acid sites forming NH4+. The results show that the dissociated H atoms present on the catalyst surface formed new Si-OH hydroxyl species - the new Brønsted acid site. Besides, the isolated Si-O-W species is the key towards H-bond and Si-OH formation. Additionally, the H atoms adsorbed surrounding the Si-O-W species of mono-oxo O=WO4 and di-oxo (O=)2WO2 species, where the Si-O-W species are the main species presented on the Inc-SSP catalysts than that of the IWI-SSP catalysts.
Keywords
acid transformation; Bronsted acid; in situ DRIFTS; Lewis acid; silica; tungsten oxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ansari, S., Ansari, M.S., Satsangee, S.P. and Jain, R. (2019), "WO3 decorated graphene nanocomposite based electrochemical sensor: A prospect for the detection of anti-anginal drug", Anal. Chim. Acta, 1046, 99-109. https://doi.org/10.1016/j.aca.2018.09.028.   DOI
2 Zeng, Y., Zhu, X., Xie, J., and Chen, L. (2021), "Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample", Adv. Nano Res., 10(3), 295-312. https://doi: 10.12989/anr.2021.10.3.295.   DOI
3 Fujimoto, K.I., Uchijima, T., Masai, M. and Inui, T. (1993), New Aspects of Spillover Effect in Catalysis: For Development of Highly Active Catalysts, Elsevier, Amsterdam, Netherlands.
4 Gayapan, K., Sripinun, S., Panpranot, J., Praserthdam, P. and Assabumrungrat, S. (2018) "Effects of calcination and pretreatment temperatures on the catalytic activity and stability of H2-treated WO3/SiO2 catalysts in metathesis of ethylene and 2-butene", RSC Adv., 8(50), 28555-28568. https://doi.org/10.1039/C8RA04949A.   DOI
5 Guntida, A., Suriye, K., Panpranot, J. and Praserthdam, P. (2018), "Comparative study of lewis acid transformation on non-reducible and reducible oxides under hydrogen atmosphere by in situ drifts of adsorbed NH3", Top. Catal., 61(15), 1641-1652. https://doi.org/10.1007/s11244-018-0995-1.   DOI
6 Guntida, A., Suriye, K., Panpranot, J. and Praserthdam, P. (2020), "Lewis acid transformation to Bronsted acid sites over supported tungsten oxide catalysts containing different surface WOx structures", Catal. Today, 358, 354-369. https://doi.org/10.1016/j.cattod.2019.07.019.   DOI
7 Hair, M.L. (1975), "Hydroxyl groups on silica surface", J. Non-Cryst. Solids, 19, 299-309. https://doi.org/10.1016/0022-3093(75)90095-2.   DOI
8 Zhou, Z., Kong, B., Yu, C., Shi, X., Wang, M., Liu, W., Sun, Y., Zhang, Y., Yang, H. and Yang, S. (2014), "Tungsten oxide nanorods: An efficient nanoplatform for tumor CT imaging and photothermal therapy", Sci. Rep., 4(1), 3653. https://doi.org/10.1038/srep03653.   DOI
9 Xu, H., Sun, M., Liu, S., Li, Y., Wang, J. and Chen, Y. (2017), "Effect of the calcination temperature of cerium-zirconium mixed oxides on the structure and catalytic performance of WO3/CeZrO2 monolithic catalyst for selective catalytic reduction of NOx with NH3", RSC Adv., 7(39), 24177-24187. https://doi.org/10.1039/c7ra03054a.   DOI
10 Bhuiyan, T.I., Arudra, P., Akhtar, M.N., Aitani, A.M., Abudawoud, R.H., Al-Yami, M.A. and Al-Khattaf, S.S. (2013), "Metathesis of 2-butene to propylene over W-mesoporous molecular sieves: A comparative study between tungsten containing MCM-41 and SBA-15", Appl. Catal. A, 467, 224-234. https://doi.org/10.1016/j.apcata.2013.07.034.   DOI
11 Hara, M., Nakajima, K. and Kamata, K. (2015), "Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals", Sci. Technol. Adv. Mater., 16(3), 034903. https://doi.org/10.1088/1468-6996/16/3/034903.   DOI
12 Hattori, H. and Shishido, T. (1997), "Molecular hydrogen-originated protonic acid site as active site on solid acid catalyst", Catal. Surv. Asia, 1(2), 205-213. https://doi.org/10.1023/A:1019081031021.   DOI
13 Howell, J.G., Li, Y.P. and Bell, A.T. (2016), "Propene metathesis over supported tungsten oxide catalysts: A study of active site formation", ACS Catal., 6(11), 7728-7738. https://doi.org/10.1021/acscatal.6b01842.   DOI
14 Zhang, X., Hu, C., Bai, H., Yan, Y., Li, J., Yang, H., Lu, X. and Xi, G. (2013), "Construction of self-supported three-dimensional TiO2 sheeted networks with enhanced photocatalytic activity", Sci. Rep., 3(1), 3563. https://doi.org/10.1038/srep03563.   DOI
15 Boonpai, S., Wannakao, S., Panpranot, J., Jongsomjit, B. and Praserthdam, P. (2020), "Active site formation in WOx supported on spherical silica catalysts for Lewis acid transformation to Bronsted acid activity", J. Phys. Chem. C, 124(29), 15935-15943. https://doi.org/10.1021/acs.jpcc.0c03657.   DOI
16 Chirkin, A., Lavrenko, V., Malysheva, M. and Kuznetsova, L. (2012), "Composition and structure of functional groups on the surface of tungsten disilicide powder", Powder Metall. Met. Ceram., 51(1), 1-6. https://doi.org/10.1007/s11106-012-9388-3.   DOI
17 Ebitani, K., Konishi, J. and Hattori, H. (1991), "Skeletal isomerization of hydrocarbons over zirconium oxide promoted by platinum and sulfate ion", J. Catal., 130(1), 257-267. https://doi.org/10.1016/0021-9517(91)90108-G.   DOI
18 Yang, X.L., Dai, W.L., Gao, R., Chen, H., Li, H., Cao, Y. and Fan, K. (2005), "Synthesis, characterization and catalytic application of mesoporous W-MCM-48 for the selective oxidation of cyclopentene to glutaraldehyde", J. Mol. Catal. A Chem., 241(1-2), 205-214. https://doi.org/10.1016/j.molcata.2005.07.025.   DOI
19 Yue, M.B., Sun, L.B., Cao, Y., Wang, Z.J., Wang, Y., Yu, Q. and Zhu, J.H. (2008), "Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group", Micropor. Mesopor. Mat., 114(1-3), 74-81. https://doi.org/10.1016/j.micromeso.2007.12.016.   DOI
20 Zhang, Y., Zhou, Y., Shi, J., Zhou, S., Sheng, X., Zhang, Z. and Xiang, S. (2014), "Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation", J. Mol. Catal. A Chem., 381, 138-147. https://doi.org/10.1016/j.molcata.2013.10.007.   DOI
21 Mirtaheri, B., Shokouhimehr, M. and Beitollahi, A. (2016), "Synthesis of mesoporous tungsten oxide by template-assisted sol-gel method and its photocatalytic degradation activity", J. Sol-Gel Sci. Technol., 82(1), 148-156. https://doi.org/10.1007/s10971-016-4289-4.   DOI
22 Daniel, M., Desbat, B., Lassegues, J., Gerand, B. and Figlarz, M. (1987), "Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates", J. Solid State Chem., 67(2), 235-247. https://doi.org/10.1016/0022-4596(87)90359-8.   DOI
23 Saelee, T., Limsoonthakul, P., Aphichoksiri, P., Rittiruam, M., Lerdpongsiripaisarn, M., Miyake, T., Yamashita, H., Mori, K., Kuwahara, Y., Praserthdam, S. and Praserthdam, P. (2021), "Experimental and computational study on roles of WOx promoting strong metal support promoter interaction in Pt catalysts during glycerol hydrogenolysis", Sci Rep, 11(1), 530. https://doi.org/10.1038/s41598-020-79764-3.   DOI
24 Bera, R. and Koner, S. (2012), "Incorporation of tungsten oxide in mesoporous silica: Catalytic epoxidation of olefins using sodium-bi-carbonate as co-catalyst", Inorg. Chim. Acta, 384, 233-238. https://doi.org/10.1016/j.ica.2011.12.003.   DOI
25 Ebitani, K., Tsuji, J., Hattori, H. and Kita, H. (1992), "Dynamic modification of surface acid properties with hydrogen molecule for zirconium oxide promoted by platinum and sulfate ions", J. Catal., 135(2), 609-617. https://doi.org/10.1016/0021-9517(92)90057-O.   DOI
26 Kiani, D., Sourav, S., Baltrusaitis, J. and Wachs, I.E. (2019), "Oxidative Coupling of Methane (OCM) by SiO2-supported tungsten oxide catalysts promoted with Mn and Na", ACS Catal., 9(7), 5912-5928. https://doi.org/10.1021/acscatal.9b01585.   DOI
27 Kiani, D., Sourav, S., Wachs, I.E. and Baltrusaitis, J. (2020), "Synthesis and molecular structure of model silica-supported tungsten oxide catalysts for oxidative coupling of methane (OCM)", Catal. Sci. Technol., 10(10), 3334-3345. https://doi.org/10.1039/d0cy00289e.   DOI
28 Shen, H., Wu, X., Jiang, D., Li, X. and Ni, J. (2017), "Identification of active sites for hydrogenation over Ru/SBA-15 using in situ Fourier-transform infrared spectroscopy", Chin. J. Catal., 38(9), 1597-1602. https://doi.org/10.1016/s1872-2067(16)62571-8.   DOI
29 Klepel, O., Bohlmann, W., Ivanov, E., Riede, V. and Papp, H. (2004), "Incorporation of tungsten into MCM-41 framework", Micropor. Mesopor. Mat., 76(1-3), 105-112. https://doi.org/10.1016/j.micromeso.2004.07.038.   DOI
30 Horsley, J., Wachs, I., Brown, J., Via, G. and Hardcastle, F. (1987), "Structure of surface tungsten oxide species in the tungsten trioxide/alumina supported oxide system from x-ray absorption near-edge spectroscopy and Raman spectroscopy", J. Phys. Chem., 91, 4014-4020. https://doi.org/10.1021/j100299a018.   DOI
31 Ross-Medgaarden, E.I. and Wachs, I.E. (2007), "Structural determination of bulk and surface tungsten oxides with UV- vis diffuse reflectance spectroscopy and raman spectroscopy", J. Phys. Chem. C, 111(41), 15089-15099. https://doi.org/10.1021/jp074219c.   DOI
32 Wallin, M., Gronbeck, H., Spetz, A.L., Eriksson, M. and Skoglundh, M. (2005), "Vibrational analysis of H2 and D2 adsorption on Pt/SiO2", J. Phys. Chem. B, 109(19), 9581-9588. https://doi.org/10.1021/jp044759z.   DOI
33 Watmanee, S., Suriye, K., Praserthdam, P. and Panpranot, J. (2019), "Formation of isolated tungstate sites on hierarchical structured SiO2 and HY zeolite-supported WOx catalysts for propene metathesis", J. Catal., 376, 150-160. https://doi.org/10.1016/j.jcat.2019.07.001.   DOI
34 Wu, J.F., Ramanathan, A., Snavely, W.K., Zhu, H., Rokicki, A. and Subramaniam, B. (2016), "Enhanced metathesis of ethylene and 2-butene on tungsten incorporated ordered mesoporous silicates", Appl. Catal. A, 528, 142-149. https://doi.org/10.1016/j.apcata.2016.10.004.   DOI
35 Ueda, R., Kusakari, T., Tomishige, K. and Fujimoto, K. (2000), "Nature of spilt-over hydrogen on acid sites in zeolites: Observation of the behavior of adsorbed pyridine on zeolite catalysts by means of FTIR", J. Catal., 194(1), 14-22. https://doi.org/10.1006/jcat.2000.2906.   DOI
36 Van Grieken, R., Calleja, G., Serrano, D., Martos, C., Melgares, A. and Suarez, I. (2007), "The role of the hydroxyl groups on the silica surface when supporting metallocene/MAO catalysts", Polym. React. Eng., 11(1), 17-32. https://doi.org/10.1081/pre-120018583.   DOI
37 Vorakitkanvasin, S., Phongsawat, W., Suriye, K., Praserthdam, P. and Panpranot, J. (2017), "In situ-DRIFTS study: Influence of surface acidity of rhenium-based catalysts in the metathesis of various olefins for propylene production", RSC Adv., 7(61), 38659-38665. https://doi.org/10.1039/c7ra06181a.   DOI
38 Watmanee, S., Suriye, K., Praserthdam, P. and Panpranot, (2018) "Effect of surface tungstate W5+ species on the metathesis activity of W-doped spherical silica catalysts", Top. Catal., 61(15), 1615-1623. https://doi.org/10.1007/s11244-018-1020-4.   DOI
39 Wu, X., Zhang, L., Weng, D., Liu, S., Si, Z. and Fan, J. (2012), "Total oxidation of propane on Pt/WOx/Al2O3 catalysts by formation of metastable Ptdelta+ species interacted with WOx clusters", J. Hazard. Mater., 225, 146-154. https://doi.org/10.1016/j.jhazmat.2012.05.011.   DOI
40 Hu, J.Z., Kwak, J.H., Wang, Y., Hu, M.Y., Turcu, R.V. and Peden, C.H. (2011), "Characterizing surface acidic sites in mesoporous-silica-supported tungsten oxide catalysts using solid-state NMR and quantum chemistry calculations", J. Phys. Chem. C, 115(47), 23354-23362. https://doi.org/10.1021/jp203813f.   DOI
41 Lv, X., Zhang, L., Xing, F. and Lin, H. (2016), "Controlled synthesis of monodispersed mesoporous silica nanoparticles: Particle size tuning and formation mechanism investigation", Micropor. Mesopor. Mat., 225, 238-244. https://doi.org/10.1016/j.micromeso.2015.12.024.   DOI
42 Aziz, M.A.A., Puad, K., Triwahyono, S., Jalil, A.A., Khayoon, M.S., Atabani, A.E., Ramli, Z., Majid, Z.A., Prasetyokoe, D. and Hartanto, D. (2017), "Transesterification of croton megalocarpus oil to biodiesel over WO3 supported on silica mesoporous-macroparticles catalyst", Chem. Eng. J., 316, 882-892. https://doi.org/10.1016/j.cej.2017.02.049.   DOI
43 Azmi, A.A., Ruhaimi, A.H. and Aziz, M.A.A. (2020), "Efficient 3-aminopropyltrimethoxysilane functionalised mesoporousceria nanoparticles for CO2 capture", Mater. Today Chem., 16, 100273. https://doi.org/10.1016/j.mtchem.2020.100273.   DOI
44 Bendjeriou-Sedjerari, A., Sofack-Kreutzer, J., Minenkov, Y., Abou-Hamad, E., Hamzaoui, B., Werghi, B., Anjum, D.H., Cavallo, L., Huang K.W. and Basset, J.M. (2016), "Tungsten (VI) Carbyne/Bis(carbene) tautomerization enabled by N-Donor SBA15 surface ligands: A solid-state NMR and DFT study", Angew. Chem. Int. Edit., 55(37), 11162-11166. https://doi.org/10.1002/anie.201605934.   DOI
45 Maity, N., Barman, S., Minenkov, Y., Ould-Chikh, S., Abou-Hamad, E., Ma, T., Qureshi, Z.S., Cavallo, L., D'Elia, V., Gates, B.C. and Basset, J.M. (2018), "A silica-supported monoalkylated tungsten dioxo complex catalyst for olefin metathesis", ACS Catal., 8(4), 2715-2729. https://doi.org/10.1021/acscatal.7b04304.   DOI
46 Inaki, Y., Yoshida, H., Yoshida, T. and Hattori, T. (2002), "Active sites on mesoporous and amorphous silica materials and their photocatalytic activity: An investigation by FTIR, ESR, VUV-UV and photoluminescence spectroscopies", J. Phys. Chem. B, 106(35), 9098-9106. https://doi.org/10.1021/jp025768f.   DOI
47 Xie, W., and Wang, H. (2020), "Immobilized polymeric sulfonated ionic liquid on core-shell structured Fe3O4/SiO2 composites: A magnetically recyclable catalyst for simultaneous transesterification and esterifications of low-cost oils to biodiesel", Renew. Energy, 145, 1709-1719. https://doi.org/10.1016/j.renene.2019.07.092.   DOI
48 Hu, J.C., Wang, Y.D., Chen, L.F., Richards, R., Yang, W.M., Liu, Z.C. abd Xu, W. (2006), "Synthesis and characterization of tungsten-substituted SBA-15: An enhanced catalyst for 1-butene metathesis", Micropor. Mesopor. Mat., 93(1-3), 158-163. https://doi.org/10.1016/j.micromeso.2006.02.019.   DOI
49 Hu, L., Ji, S., Jiang, Z., Song, H., Wu, P. and Liu, Q. (2007a), "Direct synthesis and structural characteristics of ordered SBA15 mesoporous silica containing tungsten oxides and tungsten carbides", J. Phys. Chem. C, 111(42), 15173-15184. https://doi.org/10.1021/jp074879h.   DOI
50 Hu, L., Ji, S., Xiao, T., Guo, C., Wu, P. and Nie, P. (2007b), "Preparation and characterization of tungsten carbide confined in the channels of SBA-15 mesoporous silica", J. Phys. Chem. B, 111(14), 3599-3608. https://doi.org/10.1021/jp066349b.   DOI
51 Liu, G., Wang, X., Wang, X., Han, H. and Li, C. (2012), "Photocatalytic H2 and O2 evolution over tungsten oxide dispersed on silica", J. Catal., 293, 61-66. https://doi.org/10.1016/j.jcat.2012.06.003.   DOI
52 Wu, J.F., Ramanathan, A., Biancardi, A., Jystad, A.M., Caricato, M., Hu, Y. and Subramaniam, B. (2018), "Correlation of active site precursors and olefin metathesis activity in W-incorporated silicates", ACS Catal., 8(11), 10437-10445. https://doi.org/10.1021/acscatal.8b03263.   DOI
53 Rozanov, V.V. and Krylov, O.V. (1997), "Hydrogen spillover in heterogeneous catalysis", Russ. Chem. Rev., 66(2), 107. https://doi.org/10.1070/RC1997v066n02ABEH000308.   DOI
54 Huang, Z.F., Song, J., Pan, L., Zhang, X., Wang, L. and Zou, J.J. (2015), "Tungsten oxides for photocatalysis, electrochemistry, and phototherapy", Adv. Mater., 27(36), 5309-5327. https://doi.org/10.1002/adma.201501217.   DOI
55 Lwin, S., Li, Y., Frenkel, A.I. and Wachs, I.E. (2016), "Nature of WOx sites on SiO2 and their molecular structure-reactivity/selectivity relationships for propylene metathesis", ACS Catal., 6(5), 3061-3071. https://doi.org/10.1021/acscatal.6b00389.   DOI
56 Persson, C., Oskarsson, A . and Andersson, C. (1992), "Tungsten (VI) complexes with bidentate coordination of the catecholate monoanion. Synthesis of [W(O)Cl3(O, HO-C6H4).O(C2H5)2] and synthesis and crystal structure of [W(O)Cl(O2-C6H4)(O, HO-C6H4).O(C2H5)2]", Polyhedron, 11(16), 2039-2044. https://doi.org/10.1016/S0277-5387(00)83159-9.   DOI
57 Xie, W., and Wan, F. (2019), "Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils", Chem. Eng. J., 365, 40-50. https://doi.org/10.1016/j.cej.2019.02.016.   DOI
58 Yun, D., Yun, Y.S., Kim, T.Y., Park, H., Lee, J.M., Han, J.W. and Yi, J. (2016), "Mechanistic study of glycerol dehydration on Bronsted acidic amorphous aluminosilicate", J. Catal., 341, 33-43. https://doi.org/10.1016/j.jcat.2016.06.010.   DOI
59 Qian, L., Cai, W., Zhang, L., Ye, L., Li, J., Tang, M., Yue, B. and He, H. (2015), "The promotion effect of hydrogen spillover on CH4 reforming with CO2 over Rh/MCF catalysts", Appl. Catal., B, 164, 168-175. https://doi.org/10.1016/j.apcatb.2014.09.006.   DOI
60 Quan, H., Gao, Y. and Wang, W. (2020), "Tungsten oxide-based visible light-driven photocatalysts: Crystal and electronic structures and strategies for photocatalytic efficiency enhancement", Inorg. Chem. Front., 7(4), 817-838. https://doi.org/10.1039/c9qi01516g.   DOI
61 Yfanti, V.L. and Lemonidou, A.A. (2018), "Mechanistic study of liquid phase glycerol hydrodeoxygenation with in-situ generated hydrogen", J. Catal., 368, 98-111. https://doi.org/10.1016/j.jcat.2018.09.036.   DOI
62 Song, J., Huang, Z.F., Pan, L., Zou, J.J., Zhang, X. and Wang, L. (2015), "Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst", ACS Catal., 5(11), 6594-6599. https://doi.org/10.1021/acscatal.5b01522.   DOI
63 Xie, W., and Wang, H. (2021), "Grafting copolymerization of dual acidic ionic liquid on core-shell structured magnetic silica: A magnetically recyclable Bronsted acid catalyst for biodiesel production by one-pot transformation of low-quality oils", Fuel, 283, 118893. https://doi.org/10.1016/j.fuel.2020.118893.   DOI