• 제목/요약/키워드: nail connections

검색결과 9건 처리시간 0.02초

A numerical approach for simulating the behaviour of timber shear walls

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.383-407
    • /
    • 2012
  • A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.

Refined damage prediction of low-rise building envelope under high wind load

  • Pan, F.;Cai, C.S.;Zhang, W.;Kong, B.
    • Wind and Structures
    • /
    • 제18권6호
    • /
    • pp.669-691
    • /
    • 2014
  • Since low-rise residential buildings are the most common and vulnerable structures in coastal areas, a reliable prediction of their performance under hurricanes is necessary. The present study focuses on developing a refined finite element model that is able to more rigorously represent the load distributions or redistributions when the building behaves as a unit or any portion is overloaded. A typical 5:12 sloped low-rise residential building is chosen as the prototype and analyzed under wind pressures measured in the wind tunnel. The structural connections, including the frame-to-frame connections and sheathing-to-frame connections, are modeled extensively to represent the critical structural details that secure the load paths for the entire building system as well as the boundary conditions provided to the building envelope. The nail withdrawal, the excessive displacement of sheathing, the nail head pull-through, the sheathing in-plane shear, and the nail load-slip are found to be responsible for the building envelope damage. The uses of the nail type with a high withdrawal capacity, a thicker sheathing panel, and an optimized nail edge distance are observed to efficiently enhance the building envelope performance based on the present numerical damage predictions.

The Tensile Properties for Powder-driven-nail Connections for Japanese Larch Small Round Timber

  • Shim, Kug-Bo;Lee, Do-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권2호통권130호
    • /
    • pp.8-16
    • /
    • 2005
  • In an effort to encourage the development of value added engineered applications for small diameter round timber, research is being conducted to develop and verify design guidelines for connections with specific application to round timbers. The objective of this research is to provide potential users with a number of viable connection options applicable in the fabrication of engineered, round wood structural components and systems. Target uses include trusses, built up flange beams and space frames. This paper presents information on a mortised steel plate connection fabricated using powder driven nails in 6 cm diameter Japanese Larch. The design load for PDN connections are around 1.3 kN per nail with strip and 0.8 kN per nail without stripe. The design model for PDN connectors could be chosen by the number of nails. If the number of nails are more than the critical number between nail bearing and wood failure, the wood failure model could be the way to design the structure safely. The wood failure model needs to be studied more but the model could be the tensile and cleavage mixed failure model.

나선형 철선못 접합부의 항복내력 및 강성 예측 (Estimation of Yield strength and Slip Modulus for Helically Threaded Nail Connection)

  • 황권환;심국보
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권6호
    • /
    • pp.524-530
    • /
    • 2009
  • 기둥-보 구조와 경골목구조가 혼합된 공법은 경골목구조가 심벽 또는 평벽 요소로써 구조내력성능의 대부분을 차지하고 있다. 경골목구조의 수평전단내력성능은 면재에 대한 못접합부의 전단성능으로부터 예측할 수 있으며, 못접합부는 못의 휨내력성능을 이용하여 예측할 수 있다. 못접합에 의한 내력벽의 항복내력과 벽체 강성을 예측하기 위한 기초 연구로써 못의 휨내력성능을 이용한 못접합부의 항복내력 및 접합계수(초기강성)를 검토하였다. 못접합부 내력성능 예측에는 각각의 주부재에 대해 일반 지압내력 및 지압강성을 이용하고, 파스너인 나선형 철선못의 휨시험에 의한 휨항복내력성능을 이용하였다. 홈가공부의 지름에 의한 항복내력은 예측 정밀성이 우수하였으나, 접합계수는 낮게 예측되었다. 그 원인으로 주부재에서는 비중의 영향, 측면부재에서는 못머리지름에 의한 인발, 접합부에서는 못머리부의 지압 및 모멘트저항 등이 영향을 끼침을 알 수 있었으며, 이에 대한 차후 검토가 요구된다.

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

전통 문화재 목조 프레임의 횡하중에 대한 거동 및 이력특성 (Behavior and Hysteresis Characteristics of Traditional Timber Framers under Lateral Load)

  • 이필성
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.396-403
    • /
    • 1999
  • This experimental study investigates the hysterestic behavior of traditional timber frames subjected to lateral loads. Prototype frames for this study were selected from one of typical national treasures for timber structures in Korea. For simplicity roof structures and braket systems were excluded from specimens and the joint behavior of beam-to-column system were presumed to have crucial effect on their global behavior. The experimental observation showed stiffness degradation and slip after experiencing initial yield and the first cycle at a new larger displacement due to inherent gaps in traditional timber connection and gradual indentation of interfaces, The cyclic behaviors of all specimens were similar to those os modern timber frames with bolt and nail connections. Additional structural members such as an upper beam and clay-filled wall increased the initial stiffness strength and energy dissipation. It is expected that collapse of Korean traditional timber frames under lateral load is mainly caused from P-$\Delta$ effects rather than local member failure.

  • PDF

프리컷 방식을 적용한 기둥-보 공법의 수평전단내력 (Shear Performance of Post and Beam Construction by Pre-Cut Process)

  • 황권환;박주생;박문재
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권6호
    • /
    • pp.1-12
    • /
    • 2007
  • 한국형 목조건축 실현 및 국내산 조림 낙엽송의 유효 이용을 위해 전통목구조에 있어 널리 사용되는 짜맞춤 공법을 응용한 기계 프리컷 방식으로 드리프트 핀 접합한 낙엽송 집성재 기둥-보 곡법에 대해 수평전단내력성능을 평가하였다. 기계 프리컷 가공된 부재로부터 기둥-보 공법으로 이루어진 골조구조체, 골조와 경골목구조 공법을 혼용한 벽구조체에 대해 현행 KS F 2154 기준에 의거하여 수평전단반복시험을 행하여 얻어진 하중-변위로부터 전단 변형과 전단력의 관계를 산출하였다. 무재하식 수평전단 가력에 의해 최대 전단내력을 골조구조체에서 1.9 kN/m, 벽구조체에서 9.7 kN/m, 전단강성계수는 167 kN/rad, 8198 kN/rad로 각각 나타났다. 골조구조체는 벽구조체에 비해 하중 분담률이 20% 정도, 강성에 있어서는 2% 정도로 나타났으며, 전단내력벽의 최대 전단내력은 골조에 비해 상대적으로 변형성능이 낮게 나타났다. 일본건축학회의 벽배율 산정법에 의한 전단내력벽의 벽배율은 1.5로 산출되었다. 전단내력벽의 전단성능 향상을 위해서는 주각부 및 기둥-보, 못과 면재에 대한 차후 검토와 수평전단 가력법에 대한 검토가 필요한 것으로 판단되었다.

End Distance of Single-shear Screw Connection in Cross Laminated Timber

  • Oh, Jung-Kwon;Kim, Gwang-Chul;Kim, Kwang-Mo;Lee, Jun-Jae;Hong, Jung-Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.746-752
    • /
    • 2017
  • Cross-laminated timber (CLT) is a relatively new engineered wood for timber construction. It is a great shear wall material. It was known that the shear performance of the CLT wall depends on the performance of connections. In connection, nail or screw has to be installed with a certain distance from the end of the timber. Current building code specifies the distance on the name of end distance. The end distance was decided as a minimum distance not to make splitting or tearing out in lumber or glued laminated timber. As a relatively new engineered wood, the end distance of CLT connection need to be identified because CLT is cross-wisely glued lumber products like plywood. Different from glued laminated timber or lumber, cross layer of CLT may prevent wood from splitting or tearing-out. As a result, the end distance of CLT was expected to be reduced than glued laminated timber. The shorter end distance may let more versatile connector design possible. In this study, prior to developing novel connection for CLT, the end distance of CLT connection was experimentally investigated to identify the end distance limitation. The experiments showed that the end distance can be reduced from 7D to 6D, in case of the tested CLT combination and screw in this study.

동바리 연결부의 전단 및 회전 강성 실험 (An Experimental Study on Shear and Rotation Stiffness in the Connection Parts of Shores)

  • 곽순섭;김호수;정성진;홍건호;이경은
    • 콘크리트학회논문집
    • /
    • 제15권6호
    • /
    • pp.848-855
    • /
    • 2003
  • 콘크리트 타설중, 콘크리트 타설경로로 인한 부분재하는 동바리의 연결부에 횡력을 발생시킨다. 이러한 횡력을 구속하기 위해 동바리의 상$.$하부 접합부가 못으로 긴결되어야 한다. 그러나 시공성과 동바리 철거의 편의성을 위해 작업자들은 못을 거의 사용하지 않는다. 이러한 경우 동바리의 접합부는 전단력과 회전에 저항할 수 없다. 그리고 이러한 상황은 거푸집-동바리 시스템의 붕괴를 유발시킬 것이다. 그러므로 시공현장의 상황을 고려한다면 거푸집-동바리 시스템의 접합부 해석을 위해 접촉모델 및 스프링모델이 요구된다. 이에 따라 동바리에서의 접합부의 몇가지 유형에 따른 전단강성과 회전강성의 효과를 이해할 필요가 있다. 본 논문은 못의 길이, 개수, 위치의 변수에 따라 동바리의 연결부의 회전강성값과 전단강성값을 실험을 통해 평가하고자 하며 동바리의 지지단에 따른 결과를 보여준다. 그리고 이러한 결과는 실제 상황과 유사한 스프링모델 설정 및 좌굴하중 평가에 사용될 수 있다.