Shear Performance of Post and Beam Construction by Pre-Cut Process

프리컷 방식을 적용한 기둥-보 공법의 수평전단내력

  • Hwang, Kweonhwan (Div. of Wood Engineering, Dept. of Forest Products, Korea Forest Research Institute) ;
  • Park, Joo-Saeng (Div. of Wood Engineering, Dept. of Forest Products, Korea Forest Research Institute) ;
  • Park, Moon-Jae (Div. of Wood Engineering, Dept. of Forest Products, Korea Forest Research Institute)
  • 황권환 (국립산림과학원 임산공학부 목재성능과) ;
  • 박주생 (국립산림과학원 임산공학부 목재성능과) ;
  • 박문재 (국립산림과학원 임산공학부 목재성능과)
  • Received : 2007.06.13
  • Accepted : 2007.07.25
  • Published : 2007.11.25

Abstract

For the purpose of effective utilization of domestic second-grown larch as structural members, post and beam construction applying traditional construction to Japanese larch glulam members was adopted with processing by machine pre-cut method. In general, horizontal shear test by KS F 2154 is conducted to assess the horizontal shear properties of the wooden structure by post and beam construction. The frame was consisted of post and beam member with appropriate fasteners, and members have their own processed parts (notch, hole, etc.) that can be well-connected each other. The shear wall was consisted of the frame with screw-nail sheathed panel (OSB). The results of horizontal shear loading tests without vertical loads conducted on the frame and the shear wall structures, the maximum strengths were about 1.9 kN/m and about 9.7 kN/m, the shear rigidities were about 167 kN/rad, 8198 kN/rad, respectively. The strength proportion of the frame specimen was about 20% of the wall's and about 2% in initial stiffness. Nail failures are remarkable on the shear wall specimen with punching shears and shear failures. The shear load factor for the shear wall specimen by the method of Architectural Institute of Japan was 1.5, which was obtained by the bi-linear method. Loading method should be considered to obtain smooth load-deformation relationship. For the better shear performance of the structures, column base and post and beam connections and sheathed panel should be further examined as well.

한국형 목조건축 실현 및 국내산 조림 낙엽송의 유효 이용을 위해 전통목구조에 있어 널리 사용되는 짜맞춤 공법을 응용한 기계 프리컷 방식으로 드리프트 핀 접합한 낙엽송 집성재 기둥-보 곡법에 대해 수평전단내력성능을 평가하였다. 기계 프리컷 가공된 부재로부터 기둥-보 공법으로 이루어진 골조구조체, 골조와 경골목구조 공법을 혼용한 벽구조체에 대해 현행 KS F 2154 기준에 의거하여 수평전단반복시험을 행하여 얻어진 하중-변위로부터 전단 변형과 전단력의 관계를 산출하였다. 무재하식 수평전단 가력에 의해 최대 전단내력을 골조구조체에서 1.9 kN/m, 벽구조체에서 9.7 kN/m, 전단강성계수는 167 kN/rad, 8198 kN/rad로 각각 나타났다. 골조구조체는 벽구조체에 비해 하중 분담률이 20% 정도, 강성에 있어서는 2% 정도로 나타났으며, 전단내력벽의 최대 전단내력은 골조에 비해 상대적으로 변형성능이 낮게 나타났다. 일본건축학회의 벽배율 산정법에 의한 전단내력벽의 벽배율은 1.5로 산출되었다. 전단내력벽의 전단성능 향상을 위해서는 주각부 및 기둥-보, 못과 면재에 대한 차후 검토와 수평전단 가력법에 대한 검토가 필요한 것으로 판단되었다.

Keywords

References

  1. 한국표준협회. 2001.KS F 2154. 경골 목조 전단벽의 전단 시험방법
  2. 심상로, 여환명, 심국보. 2005. 이수종 구조용 집성재의 전단접착력 및 접착내구성 평가. 목재공학. 33(1): 87-96
  3. 여환명, 심국보, 김운섭, 엄창득, 한연중, 심상로. 2006. 리기다소나무와 낙엽송 혼합 이수종 구조용집성재 강도성능 평가. 2006 학술발표논문집. 한국목재공학회. pp. 172-173
  4. 장상식. 2002. 전단벽의 전단성능 예측 모형. 목재공학. 30(4): 96-105
  5. 日本建築學會(AIJ). 2006. 木質構造設計規準. 同解說 一許容應力度. 許容耐力設計法, pp. 109-115
  6. 干嶋義彦, 田原 賢. 2006 合板張り軸組および筋かい入 り軸組の水平せん斷試驗. 木材學會誌. 52(5): 312-319
  7. American Society for Testing and Materials. 2001. ASTM E 72-01. Standard test methods of conducting strength tests of panels fro building construction
  8. American Society for Testing and Materials. 1998. ASTM E 564-98. Standard practice for static load test fro shear resistance of framed walls for construction
  9. The International Organization for Standard. 2003. ISO16670. Timber structures-Joints made with mechanical fasteners-Quasi-static reversedcyclic test method
  10. Itani, R. Y, R. L. Tuomi, and W. J. McCutcheon. 1982 Methodology to evaluate racking resistance of nailed walls.
  11. Jang, S. S. 2002. Effects of stud spacing, sheathing material and aspect-ratio on racking resistance of shear walls. Mokchae Gonghak. 30(3): 97-103
  12. Shim, K. B. 2005. Structural utilization of planted softwood in Korea. In: Symposium on Engineering Properties and Uses of Plantation Timber. pp. 51-69.