• Title/Summary/Keyword: n-normed spaces

Search Result 32, Processing Time 0.021 seconds

SOME SEQUENCE SPACES OVER n-NORMED SPACES DEFINED BY FRACTIONAL DIFFERENCE OPERATOR AND MUSIELAK-ORLICZ FUNCTION

  • Mursaleen, M.;Sharma, Sunil K.;Qamaruddin, Qamaruddin
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.211-225
    • /
    • 2021
  • In the present paper we introduce some sequence spaces over n-normed spaces defined by fractional difference operator and Musielak-Orlicz function 𝓜 = (𝕱i). We also study some topological properties and prove some inclusion relations between these spaces.

THE ALEKSANDROV PROBLEM AND THE MAZUR-ULAM THEOREM ON LINEAR n-NORMED SPACES

  • Yumei, Ma
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1631-1637
    • /
    • 2013
  • This paper generalizes the Aleksandrov problem and Mazur Ulam theorem to the case of $n$-normed spaces. For real $n$-normed spaces X and Y, we will prove that $f$ is an affine isometry when the mapping satisfies the weaker assumptions that preserves unit distance, $n$-colinear and 2-colinear on same-order.

GENERALIZED HYERS-ULAM-RASSIAS STABILITY FOR A GENERAL ADDITIVE FUNCTIONAL EQUATION IN QUASI-β-NORMED SPACES

  • Moradlou, Fridoun;Rassias, Themistocles M.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2061-2070
    • /
    • 2013
  • In this paper, we investigate the generalized HyersUlam-Rassias stability of the following additive functional equation $$2\sum_{j=1}^{n}f(\frac{x_j}{2}+\sum_{i=1,i{\neq}j}^{n}\;x_i)+\sum_{j=1}^{n}f(x_j)=2nf(\sum_{j=1}^{n}x_j)$$, in quasi-${\beta}$-normed spaces.

Some Difference Paranormed Sequence Spaces over n-normed Spaces Defined by a Musielak-Orlicz Function

  • Raj, Kuldip;Sharma, Sunil K.;Gupta, Amit
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.73-86
    • /
    • 2014
  • In the present paper we introduce difference paranormed sequence spaces $c_0(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$, $c(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ and $l_{\infty}(\mathcal{M},{\Delta}^n_m,p,u,{\parallel}{\cdot},{\cdots},{\cdot}{\parallel})$ defined by a Musielak-Orlicz function $\mathcal{M}$ = $(M_k)$ over n-normed spaces. We also study some topological properties and some inclusion relations between these spaces.

THE RIESZ THEOREM IN FUZZY n-NORMED LINEAR SPACES

  • Kavikumar, J.;Jun, Young-Bae;Khamis, Azme
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.541-555
    • /
    • 2009
  • The primary purpose of this paper is to prove the fuzzy version of Riesz theorem in n-normed linear space as a generalization of linear n-normed space. Also we study some properties of fuzzy n-norm and introduce a concept of fuzzy anti n-norm.

  • PDF

ON STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH n-VARIABLES AND m-COMBINATIONS IN QUASI-𝛽-NORMED SPACES

  • Koh, Heejeong;Lee, Yonghoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.319-326
    • /
    • 2020
  • In this paper, we establish a general solution of the following functional equation $$mf\({\sum\limits_{k=1}^{n}}x_k\)+{\sum\limits_{t=1}^{m}}f\({\sum\limits_{k=1}^{n-i_t}}x_k-{\sum\limits_{k=n-i_t+1}^{n}}x_k\)=2{\sum\limits_{t=1}^{m}}\(f\({\sum\limits_{k=1}^{n-i_t}}x_k\)+f\({\sum\limits_{k=n-i_t+1}^{n}}x_k\)\)$$ where m, n, t, it ∈ ℕ such that 1 ≤ t ≤ m < n. Also, we study Hyers-Ulam-Rassias stability for the generalized quadratic functional equation with n-variables and m-combinations form in quasi-𝛽-normed spaces and then we investigate its application.

ON THE STABILITY OF THE QUADRATIC-ADDITIVE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD

  • Jin, Sun Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.201-215
    • /
    • 2012
  • In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation $f(x+y+z+w)\;+\;2f(x)\;+\;2f(y)\;+\;2f(z)\;+\;2f(w)\;-\;f(x+y)\;-\;f(x+z)\;-\;f(x+w)\;-\;f(y+z)\;-\;f(y+w)\;-\;f(z+w)=0$.