
Bull. Korean Math. Soc. 50 (2013), No. 6, pp. 2061–2070
http://dx.doi.org/10.4134/BKMS.2013.50.6.2061

GENERALIZED HYERS-ULAM-RASSIAS STABILITY FOR A

GENERAL ADDITIVE FUNCTIONAL EQUATION IN

QUASI-β-NORMED SPACES

Fridoun Moradlou and Themistocles M. Rassias

Abstract. In this paper, we investigate the generalized HyersUlam–
Rassias stability of the following additive functional equation
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in quasi-β-normed spaces.

1. Introduction and preliminaries

A classical question in the theory of functional equations is the following:
“When is it true that a function, which approximately satisfies a functional
equation E must be close to an exact solution of E?” If the problem accepts a
solution, we say that the equation E is stable. Such a problem was formulated
by Ulam [42] in 1940 and solved in the next year for the Cauchy functional
equation by Hyers [12]. It gave rise the stability theory for functional equa-
tions. The result of Hyers was extended by Aoki [2] in 1950, by considering
the unbounded Cauchy differences. In 1978, Th. M. Rassias [36] proved that
the additive mapping T , obtained by Hyers or Aoki, is linear if, in addition, for
each x ∈ E the mapping f(tx) is continuous in t ∈ R. Găvruta [10] generalized
the Rassias’ result. Following the techniques of the proof of the corollary of
Hyers [12] we observed that Hyers introduced (in 1941) the following Hyers
continuity condition: about the continuity of the mapping for each fixed, and
then he proved homogenouity of degree one and therefore the famous linearity.
Beginning around the year 1980, the stability problems of several functional
equations and approximate homomorphisms have been extensively investigated
by a number of authors and there are many interesting results concerning this
problem (see [1], [5], [8], [14]–[29], [32]–[40]).
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In 2003 Cădariu and Radu applied the fixed point method to the investi-
gation of the Jensen functional equation [6] (see also [7], [8], [16], [30]). They
could present a short and a simple proof (different of the “direct method ”, ini-
tiated by Hyers in 1941) for the generalized Hyers–Ulam stability of Jensen
functional equation [6], for Cauchy functional equation [8] and for quadratic
functional equation [7].

The following functional equation

(1.1) Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y)

is called a quadratic functional equation, and every solution of equation (1.1) is
said to be a quadratic mapping. F. Skof [41] proved the Hyers–Ulam stability
of the quadratic functional equation (1.1) for mappings f : E1 → E2, where
E1 is a normed space and E2 is a Banach space. In [9], S. Czerwik proved
the Hyers–Ulam stability of the quadratic functional equation (1.1). C. Borelli
and G. L. Forti [4] generalized the stability result of the quadratic functional
equation (1.1).

Recently, P. Gǎvruta and L. Gǎvruta used a new method for investigation
of Hyers–Ulam–Rassias stability of a nonlinear functional equation, Volterra
integral operator and Fredholm operator. This method generalized the fixed

point method [11].
We consider some basic concepts concerning quasi-β-normed spaces and

some preliminary results. We fix a real number β with 0 < β ≤ 1 and let
K denote either R or C. Let X be a linear space over K. A quasi-β-norm ‖ · ‖
is a real-valued function on X satisfying the following:

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(ii) ‖λx‖ = |λ|β‖x‖ for all λ ∈ K and all x ∈ X.

(iii) There is a constant K ≥ 1 such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all
x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm
on X. The smallest possible K is called the modulus of concavity of ‖ · ‖. A
quasi-β-Banach space is a complete quasi-β-normed space.

A quasi-β-norm ‖ · ‖ is called a (β, p)-norm (0 < p ≤ 1) if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-β-Banach space is called a (β, p)-Banach
space.

By the Aoki–Rolewicz theorem [40] (see also [3]), each quasi-norm is equiv-
alent to some p-norm. Since it is much easier to work with p-norms than
quasi-norms, henceforth we restrict our attention mainly to p-norms.

Example 1.1. For x = (x1, x2) ∈ R2, we define

‖x‖p,β =

{

(|x1|
βp + |x2|

βp)
1

p ;

2|x1|β ;

x2 6= 0

x2 = 0
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where 0 < p, β ≤ 1. Then (R2, ‖x‖p,β) is a (β, p)-norm space.

Example 1.2. If X is a quasi-β-norm space with the quasi-β-norm ‖x‖β, then

it is a quasi-norm space with the quasi-norm ‖x‖ = ‖x‖
1

β

β .

In this paper, for a fixed positive integer n ≥ 2, we introduce the following
additive functional equation of Cuachy–Jensen type:

(1.2) 2
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It is easy to see that the function f(x) = ax is a solution of the functional
equation (1.2). Every solution of the functional equation (1.2) is said to be a
generalized additive mapping of Cauchy–Jensen type.

Throughout this paper, n will be a positive integer such that n ≥ 2.

2. Generalized Hyers–Ulam–Rassias stability of Eq.(1.2): fixed
point method

In this section, by using the idea of P. Gǎvruta and L. Gǎvruta [11], we
prove the generalized Hyers–Ulam–Rassias stability of Eq.(1.2) in (β, p)-Banach
spaces.

Lemma 2.1. Let X and Y be linear spaces and suppose that a mapping

L : X → Y satisfies the functional equation (1.2) for all x1, . . . , xn ∈ X . Then

the mapping L is Cauchy additive.

Proof. Putting x1 = · · · = xn = 0 in (1.2), we get L(0) = 0. Letting xm = 0 in
(1.2) for all 1 ≤ m ≤ n with m 6= i, j, we get

(2.1) 2L(
xi

2
+ xj) + 2L(

xj

2
+ xi) + L(xi) + L(xj) = 4L(xi + xj)

for all xi, xj ∈ X . Replacing xi and xj by 2x and 2y in (2.1), respectively, we
get

(2.2) 2L(x+ 2y) + 2L(2x+ y) + L(2x) + L(2y) = 4L(2x+ 2y)

for all x, y ∈ X . Letting y = 0 in (2.2), we have

(2.3) L(2x) = 2L(x)

for all x ∈ X . It follows from (2.2) and (2.3) that

(2.4) L(x+ 2y) + L(2x+ y) + L(x) + L(y) = 4L(x+ y)

for all x, y ∈ X . Replacing x by x− y in (2.4), we get

(2.5) L(x+ y) + L(2x− y) + L(x− y) + L(y) = 4L(x)

for all x, y ∈ X . By putting x = 0 in (2.5), we have L(−y) = −L(y) for all
y ∈ X . So, L is an odd mapping. Replacing y by −y in (2.5) and using the
oddness of L, we get

(2.6) L(x− y) + L(2x+ y) + L(x+ y)− L(y) = 4L(x)
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for all x, y ∈ X . Replacing x and y by y and x in (2.6), respectively, and using
the oddness of f , we get

(2.7) −L(x− y) + L(x+ 2y) + L(x+ y)− L(x) = 4L(y)

for all x, y ∈ X . Adding (2.6) and (2.7), we have

(2.8) L(2x+ y) + L(x+ 2y) + 2L(x+ y) = 5L(y) + 5L(x)

for all x, y ∈ X . Using (2.4) and (2.8), we conclude that L(x+y) = L(x)+L(y)
for all x, y ∈ X . Therefore, L is additive. �

We recall that a subadditive mapping is a mapping ϕ : A → B, having a
domain A and a codomain (B,≤) that are both closed under addition, with
the following property:

ϕ(x+ y) ≤ ϕ(x) + ϕ(y)

for all x, y ∈ X . Now we say that a mapping ϕ : X → Y is contractively
subadditive if there exists a constant L with 0 < L < 1 such that

ϕ(x+ y) ≤ L[ϕ(x) + ϕ(y)]

for all x, y ∈ X . Therefore ϕ satisfies the following properties ϕ(λx) ≤ λLϕ(x)
and so ϕ(λnx) ≤ (λL)nϕ(x) for all x ∈ X and all positive integer λ ≥ 2.

Similarly, we say that a mapping ϕ : A → B is expansively superadditive if
there exists a constant L with 0 < L < 1 such that

ϕ(x+ y) ≥
1

L
[ϕ(x) + ϕ(y)]

for all x, y ∈ X . Therefore ϕ satisfies the following properties ϕ(x) ≤ L
λ
ϕ(λx)

and so ϕ( x
λn ) ≤ (L

λ
)nϕ(x) for all x ∈ X and all positive integer λ ≥ 2.

Throughout this paper, let X be a linear space over K and Y is a (β, p)-
Banach space with p-norm ‖ ·‖. Let K be the modulus of concavity of ‖ ·‖. For
convenience, we use the following abbreviation for a given function f : X → Y :

Df(x1, . . . , xn) = 2

n∑

j=1

f
(xj

2
+

n∑

i=1,i6=j

xi

)

+

n∑

j=1

f(xj)− 2nf
(

n∑

j=1

xj

)

for all x1, . . . , xn ∈ X .
Now, we prove the generalized Hyers–Ulam–Rassias stability of Cauchy-

Jensen type additive mapping on (β, p)-Banach spaces for the functional equa-
tion Df(x1, . . . , xn) = 0.

We apply the following theorem:

Theorem 2.2 (Banach). Let (X, d) be a complete metric space and T : X → X

a contraction, i.e., there exists α ∈ [0, 1) such that

d(Tx, T y) ≤ αd(x, y), ∀x, y ∈ X.
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Then there exists a unique a ∈ X such that Ta=a. Moreover, a=limn→∞ T nx,

and

d(a, x) ≤
1

1− α
d(x, Tx) for any x ∈ X.

Theorem 2.3. Let f : X → Y be a mapping satisfying f(0) = 0 for which

there exists a control function ϕ : X × · · · ×X
︸ ︷︷ ︸

n times

→ (0,∞) such that

lim
k→∞

1

2k
ϕ
(
2kx1, . . . , 2

kxn

)
= 0,(2.9)

‖Df(x1, . . . , xn)‖ ≤ ϕ(x1, . . . , xn),(2.10)

for all x1, . . . , xn ∈ X. If the mapping ϕ is contractively subadditive with a

constant L satisfying 2(1−β)L < 1, then there exists a unique additive mapping

A : X → Y such that

(2.11) ‖f(x)−A(x)‖ ≤
2L

p
√

2βp − (2L)p
ϕ(0, . . . , 0, x

︸︷︷︸

j th

, 0, . . . , 0)

for all x ∈ X.

Proof. For convenience, set

ϕj(x) := ϕ(0, . . . , 0, x
︸︷︷︸

j th

, 0, . . . , 0)

for all x ∈ X and all 1 ≤ j ≤ n. Consider the set

M :=

{

g : X → Y, sup
x∈X

‖g(x)− f(x)‖p

ϕ
p
j (x)

< ∞

}

and introduce the metric on M:

d(g, h) = sup
x∈X

‖g(x)− h(x)‖p

ϕ
p
j (x)

.

Then (M, d) is complete. Now we consider the linear mapping J : M → M
such that Jg(x) := 1

2g(2x) for all x ∈ X . For any g, h ∈ M, we have

d(g, h) < C =⇒
‖g(x)− h(x)‖p

ϕ
p
j (x)

≤ C, ∀x ∈ X

=⇒

∥
∥
∥
1
2g(2x)−

1
2h(2x)

∥
∥
∥

p

ϕ
p
j (2x)

≤
1

2βp
C

=⇒

∥
∥
∥
1
2g(2x)−

1
2h(2x)

∥
∥
∥

p

ϕ
p
j (x)

≤ (21−βL)pC

=⇒ d(Jg, Jh) ≤ (21−βL)pC.
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Therefore, we see that

d(Jg, Jh) ≤ (21−βL)pd(g, h), ∀g, h ∈ M.

This means J is a strictly contractive self-mapping of M, with the Lipschitz
constant (21−β)pL.

Letting xj = 2x and for each 1 ≤ k ≤ n with k 6= j, xk = 0 in (2.10), we get
∥
∥
∥2f(x)− f(2 x)

∥
∥
∥

p

ϕ
p
j (2x)

≤ 1(2.12)

for all x ∈ X . So ∥
∥
∥f(x)− 1

2f(2x)‖
p

ϕ
p
j (x)

≤ (21−βL)p

for all x ∈ X . Hence d(f, Jf) ≤ (21−βL)p.
By Theorem 2.2, there exists a unique mapping A : X → Y such that

A(2x) = 2A(x)(2.13)

for all x ∈ X , i.e., A is a unique fixed point of J . Moreover,

A(x) = lim
m→∞

1

2m
f (2mx)(2.14)

for all x ∈ X . So, we can conclude that d(f,A) ≤ 1
1−(21−βL)p

d(f, Jf), which

implies the inequality

d(f,A) ≤
(2L)p

2βp − (2L)p
.

This implies that the inequality (2.11) holds.
It follows from (2.9), (2.10) and (2.14) that

∥
∥
∥2

n∑

j=1

A
(xj

2
+

n∑

i=1,i6=j

xi

)

+

n∑

j=1

A(xj)− 2nA
(

n∑

j=1

xj

)
∥
∥
∥

= lim
m→∞

1

2mβ

∥
∥
∥2

n∑

j=1

f(2m−1xj +
n∑

i=1,i6=j

2mxi) +
n∑

i=1

f(2mxi)− 2nf(
n∑

i=1

2mxi)‖

≤ lim
m→∞

1

2mβ
ϕ (2mx1, . . . , 2

mxn)

≤ lim
m→∞

(21−βL)mϕ (x1, . . . , xn)

for all x1, . . . , xn ∈ X . So

2

n∑

j=1

A(
xj

2
+

n∑

i=1,i6=j

xi) +

n∑

i=1

A(xi) = 2nA(

n∑

i=1

xi)

for all x1, . . . , xn ∈ X . By Lemma 2.1, the mapping A : X → X is Cauchy
additive, i.e., A(x + y) = A(x) +A(y) for all x, y ∈ X . �
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Theorem 2.4. Let f : X → Y be a mapping satisfying f(0) = 0 for which

there exists a control function ϕ : X × · · · ×X
︸ ︷︷ ︸

n times

→ (0,∞) such that

lim
k→∞

2kϕ
(x1

2k
, . . . ,

xn

2k
)
= 0,(2.15)

‖Df(x1, . . . , xn)‖ ≤ ϕ(x1, . . . , xn),(2.16)

for all x1, . . . , xn ∈ X. If the mapping ϕ is expansively superadditive with a

constant L satisfying 2(β−1)L < 1. Then there exists a unique additive mapping

A : X → Y such that

(2.17) ‖f(x)−A(x)‖ ≤
2

p
√

2p − (2βL)p
ϕ(0, . . . , 0, x

︸︷︷︸

j th

, 0, . . . , 0)

for all x ∈ X.

Proof. Similar to the proof of Theorem 2.3, we consider the linear mapping
J : M → M such that Jg(x) := 2g(x2 ) for all x ∈ X . For any g, h ∈ M, we
have

d(g, h) < C =⇒
‖g(x)− h(x)‖p

ϕ
p
j (x)

≤ C, ∀x ∈ X

=⇒

∥
∥
∥2g(x2 )− 2h(x2 )

∥
∥
∥

p

ϕ
p
j (

x
2 )

≤ 2βpC

=⇒

∥
∥
∥2g(x2 )− 2h(x2 )

∥
∥
∥

p

ϕ
p
j (x)

≤ (2β−1L)pC

=⇒ d(Jg, Jh) ≤ (21−βL)pC.

Therefore, we see that

d(Jg, Jh) ≤ (2β−1L)pd(g, h), ∀g, h ∈ M.

This means J is a strictly contractive self-mapping of M, with the Lipschitz
constant (21−βL)p.

Letting xj = x and for each 1 ≤ k ≤ n with k 6= j, xk = 0 in (2.16), we get
∥
∥
∥f(x)− 2f(x2 )

∥
∥
∥

p

ϕ
p
j (x)

≤ 1(2.18)

for all x ∈ X . Hence d(f, Jf) ≤ 1.
By Theorem 2.2, there exists a unique mapping A : X → Y such that

A(
x

2
) =

1

2
A(x)(2.19)

for all x ∈ X , i.e., A is a unique fixed point of J . Moreover,

A(x) = lim
m→∞

2m f
( x

2m

)

(2.20)
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for all x ∈ X . So, we can conclude that d(f,A) ≤ 1
1−(2β−1L)p d(f, Jf), which

implies the inequality

d(f,A) ≤
2p

2p − (2βL)p
.

This implies that the inequality (2.17) holds.
The rest of the proof is similar to the proof of Theorem 2.3. �
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