THE RIESZ THEOREM IN LINEAR n-NORMED SPACES

CHOONKIL PARK* AND HAHNGYUN CHU**

ABSTRACT. We prove the Riesz theorem in linear n-normed spaces

F. Riesz [7] obtained the following theorem in a normed space.

THEOREM 1.1. Let Y and Z be subspaces of a normed space X and Y a closed proper subset of Z. For each $\theta \in (0,1)$, there exists an element $z \in Z$ such that

$$||z|| = 1, \qquad ||z - y|| \ge \theta$$

for all $y \in Y$.

In this note, we extend this result to the case of linear n-normed space. To do this, we introduce the notion of n-compact set, which is an analogous notion of sequentially compact set in normed space.

Let X be a real linear space with dim $X \ge n$ and $\|\cdot, \dots, \cdot\| : X^n \to \mathbb{R}$ a function. Then $(X, \|\cdot, \dots, \cdot\|)$ is called a *linear n-normed space* if

(nN₁)
$$||x_1, \dots, x_n|| = 0 \Leftrightarrow x_1, \dots, x_n$$
 are linearly dependent,

(nN₂) $||x_1, \dots, x_n|| = ||x_{j_1}, \dots, x_{j_n}||$ for every permutation (j_1, \dots, j_n) of $(1, \dots, n)$,

$$(nN_3) \|\alpha x_1, \dots, x_n\| = |\alpha| \|x_1, \dots, x_n\|,$$

$$(nN_4) \|x + y, x_2, \dots, x_n\| \le \|x, x_2, \dots, x_n\| + \|y, x_2, \dots, x_n\|$$

for all $\alpha \in \mathbb{R}$ and all $x, y, x_1, \dots, x_n \in X$.

The function $\|\cdot, \dots, \cdot\|$ is called an *n*-norm on X (see [1, 12.3]).

The properties of n-normed spaces and n-inner product spaces have been investigated by many authors (see [2], [3], [4], [5], [6]).

We define an n-convergent sequence in a linear n-normed space.

DEFINITION 1.2. A sequence $\{x_k\}$ in a linear *n*-normed space X is n-convergent to x and denoted by $x_k \to x$ as $k \to \infty$ if

$$\lim_{k \to \infty} ||x_k - x, w_2, \cdots, w_n|| = 0 \quad \text{for all} \ w_2, \cdots, w_n \in X.$$

Received April 15, 2006.

2000 Mathematics Subject Classification: Primary 51M25, 46B20.

Key words and phrases: n-compact, partially n-closed, linear n-normed space.

Now we introduce the concept of n-compact in a linear n-normed space.

DEFINITION 1.3. A subset Y of a linear n-normed space X is called an n-compact subset if for every sequence $\{y_k\}$ in Y, there exists a subsequence of $\{y_k\}$ which converges to an element $y \in Y$.

LEMMA 1.4. Let x_i be an element of a linear n-normed space X for each $i \in \{1, \dots, n\}$ and γ a real number. Then

$$||x_1, \dots, x_i, \dots, x_j, \dots, x_n|| = ||x_1, \dots, x_i, \dots, x_j + \gamma x_i, \dots, x_n||.$$
 for all $1 \le i \ne j \le n$.

Proof. It is obviously true.

LEMMA 1.5. Let X be a linear n-normed space and Y an n-compact subspace of X. For $v_1, \dots, v_n \in X$, $\inf_{y \in Y} \|v_1 - y, \dots, v_n - y\| = 0$, then there exists an element $y_0 \in Y$ such that $\|v_1 - y_0, \dots, v_n - y_0\| = 0$.

Proof. For each positive integer k, there exists an element $y_k \in Y$ such that

$$||v_1 - y_k, \cdots, v_n - y_k|| < \frac{1}{k}.$$

Since $\{y_k\}$ is a sequence in an *n*-compact space Y, we can consider that $\{y_k\}$ is a convergent sequence in Y without loss of generality. Let $y_k \to y_0$ as $k \to \infty$ for some $y_0 \in Y$. For every $\varepsilon > 0$, there exists a positive integer K with $\frac{1}{K} < \frac{\varepsilon}{n+1}$ such that

$$k > K$$
 implies $||y_k - y_0, w_2, \dots, w_n|| < \frac{\varepsilon}{n+1}$ for all $w_i \in X$ $(i = 2, \dots, n)$.

By Lemma 1.4, if k > K, then we have

$$\begin{split} \|v_1-y_0,v_2-y_0,& \cdots,v_n-y_0\| \leq \|y_k-y_0,v_2-y_0,\cdots,v_n-y_0\| \\ &+\|v_1-y_k,v_2-y_0,\cdots,v_n-y_0\| \\ &\leq &\|y_k-y_0,v_2-y_0,\cdots,v_n-y_0\| \\ &+\|v_1-y_k,y_k-y_0,v_3-y_0,\cdots,v_n-y_0\| \\ &+\|v_1-y_k,v_2-y_k,v_3-y_0,\cdots,v_n-y_0\| \\ &\leq &\|y_k-y_0,v_2-y_0,\cdots,v_n-y_0\| \\ &+\|v_1-y_k,y_k-y_0,v_3-y_0,\cdots,v_n-y_0\| \\ &+\|v_1-y_k,v_2-y_k,y_k-y_0,\cdots,v_n-y_0\| \\ &+\|v_1-y_k,v_2-y_k,y_k-y_0,\cdots,v_n-y_0\| \\ &+\|v_1-y_k,v_2-y_k,y_k-y_0,\cdots,v_n-y_0\| \\ &+\|v_1-y_k,v_2-y_k,v_3-y_k,\cdots,v_n-y_0\| \end{split}$$

:

$$\leq \|y_k - y_0, v_2 - y_0, \cdots, v_n - y_0\| \\ + \|v_1 - y_k, y_k - y_0, v_3 - y_0, \cdots, v_n - y_0\| \\ + \|v_1 - y_k, v_2 - y_k, y_k - y_0, \cdots, v_n - y_0\| \\ + \cdots \\ + \|v_1 - y_k, v_2 - y_k, v_3 - y_k, \cdots, y_k - y_0, v_n - y_0\| \\ + \|v_1 - y_k, v_2 - y_k, v_3 - y_k, \cdots, v_{n-1} - y_k, v_n - y_0\| \\ \leq \|y_k - y_0, v_2 - y_0, \cdots, v_n - y_0\| \\ + \|v_1 - y_k, y_k - y_0, v_3 - y_0, \cdots, v_n - y_0\| \\ + \|v_1 - y_k, y_k - y_0, v_3 - y_0, \cdots, v_n - y_0\| \\ + \cdots \\ + \|v_1 - y_k, v_2 - y_k, y_3 - y_k, \cdots, y_k - y_0, v_n - y_0\| \\ + \|v_1 - y_k, v_2 - y_k, v_3 - y_k, \cdots, v_{n-1} - y_k, y_k - y_0\| \\ + \|v_1 - y_k, v_2 - y_k, v_3 - y_k, \cdots, v_{n-1} - y_k, v_n - y_k\| \\ = \|y_k - y_0, v_2 - y_0, \cdots, v_n - y_0\| \\ + \|v_1 - y_0, y_k - y_0, v_3 - y_0, \cdots, v_n - y_0\| \\ + \|v_1 - y_0, v_2 - y_0, y_3 - y_0, \cdots, y_k - y_0, v_n - y_0\| \\ + \cdots \\ + \|v_1 - y_0, v_2 - y_0, v_3 - y_0, \cdots, v_{n-1} - y_0, y_k - y_0\| \\ + \|v_1 - y_k, v_2 - y_k, v_3 - y_k, \cdots, v_{n-1} - y_k, v_n - y_k\| \\ \leq n \frac{\varepsilon}{n+1} + \frac{1}{k} < n \frac{\varepsilon}{n+1} + \frac{\varepsilon}{n+1} = \varepsilon.$$

Since ε is arbitrary, $||v_1 - y_0, \dots, v_n - y_0|| = 0$

THEOREM 1.6. Let Y and Z be subspaces of a linear n-normed space X and Y an n-compact proper subset of Z with codimension greater than n-1. For each $\theta \in (0,1)$, there exists an element $(z_1, \dots, z_n) \in Z^n$ such that

$$||z_1, \dots, z_n|| = 1, \qquad ||z_1 - y, \dots, z_n - y|| \ge \theta$$

for all $y \in Y$.

Proof. Let $v_1, \dots, v_n \in Z \cap Y^{\perp}$ be linearly independent. Let $a = \inf_{v \in Y} \|v_1 - y, \dots, v_n - y\|.$

Assume that a = 0. By Lemma 1.5, there is an element $y_0 \in Y$ such that

$$||v_1 - y_0, \cdots, v_n - y_0|| = 0.$$

If y_0 is zero, then v_1, \dots, v_n are linearly dependent, which is a contradiction. So y_0 is nonzero. Hence v_1, \dots, v_n, y_0 are linear independent. On the other hand, it follows from the definition and (1) that $v_1 - y_0, \dots, v_n - y_0$ are linearly dependent. Thus there exist real numbers $\alpha_1, \dots, \alpha_n$ not all of which are zero such that

$$\alpha_1(v_1 - y_0) + \dots + \alpha_n(v_n - y_0) = 0.$$

Thus we have

$$\alpha_1 v_1 + \dots + \alpha_n v_n + (-1)(\alpha_1 + \dots + \alpha_n) y_0 = 0.$$

Then v_1, \dots, v_n, y_0 are linearly dependent, which is a contradiction. Hence a > 0.

For each $\theta \in (0,1)$, there exists an element $y_0 \in Y$ such that

$$a \le ||v_1 - y_0, \cdots, v_n - y_0|| \le \frac{a}{\theta}.$$

For each $j = 1, \dots, n$, let

$$z_j = \frac{v_j - y_0}{\|v_1 - y_0, \cdots, v_n - y_0\|^{\frac{1}{n}}}.$$

Then it is obvious that $||z_1, \dots, z_n|| = 1$.

$$\begin{split} \|z_{1} &- y, \cdots, z_{n} - y\| \\ &= \|\frac{v_{1} - y_{0}}{\|v_{1} - y_{0}, \cdots, v_{n} - y_{0}\|^{\frac{1}{n}}} - y, \cdots, \frac{v_{n} - y_{0}}{\|v_{1} - y_{0}, \cdots, v_{n} - y_{0}\|^{\frac{1}{n}}} - y\| \\ &= \frac{1}{\|v_{1} - y_{0}, \cdots, v_{n} - y_{0}\|} \|v_{1} - (y_{0} + y\|v_{1} - y_{0}, \cdots, v_{n} - y_{0}\|^{\frac{1}{n}}), \cdots, \\ & v_{n} - (y_{0} + y\|v_{1} - y_{0}, \cdots, v_{n} - y_{0}\|^{\frac{1}{n}})\| \\ &\geq \frac{1}{\|v_{1} - y_{0}, \cdots, v_{n} - y_{0}\|} \ a \geq \frac{a}{\frac{a}{\theta}} = \theta \end{split}$$

for all $y \in Y$.

This completes the proof.

Now we introduce the concept of partially n-closed in linear n-normed spaces.

DEFINITION 1.7. A subset Y of a linear n-normed space X is called a partially n-closed subset if for linear independent elements x_1, \dots, x_n in X there exists a sequence $\{y_k\}$ in Y such that $||x_1-y_k, \dots, x_n-y_k|| \to 0$ as $k \to \infty$ then $x_j \in Y$ for some j.

Notice that a subset Y of a linear 1-normed space X is partially 1-closed if and only if the subset Y is closed.

THEOREM 1.8. Let Y and Z be subspaces of a linear n-normed space X and Y a partially n-closed proper subset of Z. Assume that dim $Z \ge n$. For each $\theta \in (0,1)$, there exists an element $(z_1, \dots, z_n) \in Z^n$ such that

$$||z_1, \dots, z_n|| = 1, \qquad ||z_1 - y, \dots, z_n - y|| \ge \theta$$

for all $y \in Y$.

Proof. Let $v_1, \dots, v_n \in Z - Y$ be linearly independent. Let

$$a = \inf_{y \in Y} ||v_1 - y, \cdots, v_n - y||.$$

Assume that a=0. Then there is a sequence $\{y_k\}$ in Y such that $\|v_1-y_k,\cdots,v_n-y_k\|\to 0$ as $k\to\infty$. Since Y is partially n-closed, $v_j\in Y$ for some j, which is a contradiction. Hence a>0.

The rest of the proof is the same as in the proof of Theorem 1.6. \Box

References

- [1] Y.J. Cho, P.C.S. Lin, S.S. Kim and A. Misiak, *Theory of 2-Inner Product Spaces*, Nova Science Publ., New York, 2001.
- [2] H.Y. Chu, C. Park and W. Park, *The Aleksandrov problem in linear 2-normed spaces*, J. Math. Anal. Appl. **289** (2004), 666–672.
- [3] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr. 26 (1963), 115–148.
- [4] C.S. Lin, On strictly convex and strictly 2-convex 2-normed spaces, Math. Nachr. 148 (1990), 111–116.
- [5] A. Misiak, n-inner product spaces, Math. Nachr. 140 (1989), 299–319.
- [6] A. Misiak, Orthogonality and orthogonormality in n-inner product spaces, Math. Nachr. 143 (1989), 249–261.
- [7] F. Riesz, Über lineare Funktionalgleichungen, Acta Math. 41 (1918), 71–98.

*

Department of Mathematics Chungnam National University Daejeon 305–764 Republic of Korea

E-mail: *cgpark@cnu.ac.kr; **hychu@@math.cnu.ac.kr