• 제목/요약/키워드: n-maximal ideal

검색결과 42건 처리시간 0.024초

A SOLUTION OF EGGERT'S CONJECTURE IN SPECIAL CASES

  • KIM, SEGYEONG;PARK, JONG-YOULL
    • 호남수학학술지
    • /
    • 제27권3호
    • /
    • pp.399-404
    • /
    • 2005
  • Let M be a finite commutative nilpotent algebra over a perfect field k of prime characteristic p and let $M^p$ be the sub-algebra of M generated by $x^p$, $x{\in}M$. Eggert[3] conjectures that $dim_kM{\geq}pdim_kM^p$. In this paper, we show that the conjecture holds for $M=R^+/I$, where $R=k[X_1,\;X_2,\;{\cdots},\;X_t]$ is a polynomial ring with indeterminates $X_1,\;X_2,\;{\cdots},\;X_t$ over k and $R^+$ is the maximal ideal of R generated by $X_1,\;X_2,{\cdots},\;X_t$ and I is a monomial ideal of R containing $X_1^{n_1+1},\;X_2^{n_2+1},\;{\cdots},\;X_t^{n_t+1}$ ($n_i{\geq}0$ for all i).

  • PDF

ON THE IDEAL CLASS GROUPS OF REAL ABELIAN FIELDS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • 제4권1호
    • /
    • pp.45-49
    • /
    • 1996
  • Let $F_0$ be the maximal real subfield of $\mathbb{Q}({\zeta}_q+{\zeta}_q^{-1})$ and $F_{\infty}={\cup}_{n{\geq}0}F_n$ be its basic $\mathbb{Z}_p$-extension. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $F_n$. The aim of this paper is to examine the injectivity of the natural $mapA_n{\rightarrow}A_m$ induced by the inclusion $F_n{\rightarrow}F_m$ when $m>n{\geq}0$. By using cyclotomic units of $F_n$ and by applying cohomology theory, one gets the following result: If $p$ does not divide the order of $A_1$, then $A_n{\rightarrow}A_m$ is injective for all $m>n{\geq}0$.

  • PDF

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • 대한수학회지
    • /
    • 제39권1호
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.

THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho
    • 대한수학회지
    • /
    • 제57권3호
    • /
    • pp.571-583
    • /
    • 2020
  • The Galois ring R of characteristic pn having pmn elements is a finite extension of the ring of integers modulo pn, where p is a prime number and n, m are positive integers. In this paper, we develop the concepts of Jacobi sums over R and under the assumption that the generating additive character of R is trivial on maximal ideal of R, we obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums.

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • 대한수학회지
    • /
    • 제42권5호
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).

ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING

  • Moghimi, Hosein Fazaeli;Naghani, Sadegh Rahimi
    • 대한수학회지
    • /
    • 제53권6호
    • /
    • pp.1225-1236
    • /
    • 2016
  • Let R be a commutative ring with $1{\neq}0$ and n a positive integer. In this article, we introduce the n-Krull dimension of R, denoted $dim_n\;R$, which is the supremum of the lengths of chains of n-absorbing ideals of R. We study the n-Krull dimension in several classes of commutative rings. For example, the n-Krull dimension of an Artinian ring is finite for every positive integer n. In particular, if R is an Artinian ring with k maximal ideals and l(R) is the length of a composition series for R, then $dim_n\;R=l(R)-k$ for some positive integer n. It is proved that a Noetherian domain R is a Dedekind domain if and only if $dim_n\;R=n$ for every positive integer n if and only if $dim_2\;R=2$. It is shown that Krull's (Generalized) Principal Ideal Theorem does not hold in general when prime ideals are replaced by n-absorbing ideals for some n > 1.

NOTE ON GOOD IDEALS IN GORENSTEIN LOCAL RINGS

  • Kim, Mee-Kyoung
    • 대한수학회보
    • /
    • 제39권3호
    • /
    • pp.479-484
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m and d = dim A. Then we say that I is a good ideal in A, if I contains a reduction $Q=(a_1,a_2,...,a_d)$ generated by d elements in A and $G(I)=\bigoplus_{n\geq0}I^n/I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1-d, where a(G(I)) denotes the a-invariant of G(I). Let S = A[Q/a$_1$] and P = mS. In this paper, we show that the following conditions are equivalent. (1) $I^2$ = QI and I = Q:I. (2) $I^2S$ = $a_1$IS and IS = $a_1$S:sIS. (3) $I^2$Sp = $a_1$ISp and ISp = $a_1$Sp :sp ISp. We denote by $X_A(Q)$ the set of good ideals I in $X_A(Q)$ such that I contains Q as a reduction. As a Corollary of this result, we show that $I\inX_A(Q)\Leftrightarrow\IS_P\inX_{SP}(Qp)$.

w-INJECTIVE MODULES AND w-SEMI-HEREDITARY RINGS

  • Wang, Fanggui;Kim, Hwankoo
    • 대한수학회지
    • /
    • 제51권3호
    • /
    • pp.509-525
    • /
    • 2014
  • Let R be a commutative ring with identity. An R-module M is said to be w-projective if $Ext\frac{1}{R}$(M,N) is GV-torsion for any torsion-free w-module N. In this paper, we define a ring R to be w-semi-hereditary if every finite type ideal of R is w-projective. To characterize w-semi-hereditary rings, we introduce the concept of w-injective modules and study some basic properties of w-injective modules. Using these concepts, we show that R is w-semi-hereditary if and only if the total quotient ring T(R) of R is a von Neumann regular ring and $R_m$ is a valuation domain for any maximal w-ideal m of R. It is also shown that a connected ring R is w-semi-hereditary if and only if R is a Pr$\ddot{u}$fer v-multiplication domain.

ON STRONGLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Almahdi, Fuad Ali Ahmed;Bouba, El Mehdi;Koam, Ali N.A.
    • 대한수학회보
    • /
    • 제57권5호
    • /
    • pp.1205-1213
    • /
    • 2020
  • Let R be a commutative ring with 1 ≠ 0. In this paper, we introduce a subclass of the class of 1-absorbing primary ideals called the class of strongly 1-absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈ ${\sqrt{0}}$. Firstly, we investigate basic properties of strongly 1-absorbing primary ideals. Hence, we use strongly 1-absorbing primary ideals to characterize rings with exactly one prime ideal (the UN-rings) and local rings with exactly one non maximal prime ideal. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the prime ideals, the primary ideals and the 1-absorbing primary ideals. In the end of this paper, we give an idea about some strongly 1-absorbing primary ideals of the quotient rings, the polynomial rings, and the power series rings.

RING WHOSE MAXIMAL ONE-SIDED IDEALS ARE TWO-SIDED

  • Huh, Chan;Jang, Sung-Hee;Kim, Chol-On;Lee, Yang
    • 대한수학회보
    • /
    • 제39권3호
    • /
    • pp.411-422
    • /
    • 2002
  • In this note we are concerned with relationships between one-sided ideals and two-sided ideals, and study the properties of polynomial rings whose maximal one-sided ideals are two-sided, in the viewpoint of the Nullstellensatz on noncommutative rings. Let R be a ring and R[x] be the polynomial ring over R with x the indeterminate. We show that eRe is right quasi-duo for $0{\neq}e^2=e{\in}R$ if R is right quasi-duo; R/J(R) is commutative with J(R) the Jacobson radical of R if R[$\chi$] is right quasi-duo, from which we may characterize polynomial rings whose maximal one-sided ideals are two-sided; if R[x] is right quasi-duo then the Jacobson radical of R[x] is N(R)[x] and so the $K\ddot{o}the's$ conjecture (i.e., the upper nilradical contains every nil left ideal) holds, where N(R) is the set of all nilpotent elements in R. Next we prove that if the polynomial rins R[x], over a reduced ring R with $\mid$X$\mid$ $\geq$ 2, is right quasi-duo, then R is commutative. Several counterexamples are included for the situations that occur naturally in the process of this note.