DOI QR코드

DOI QR Code

THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Received : 2019.03.12
  • Accepted : 2020.01.28
  • Published : 2020.05.01

Abstract

The Galois ring R of characteristic pn having pmn elements is a finite extension of the ring of integers modulo pn, where p is a prime number and n, m are positive integers. In this paper, we develop the concepts of Jacobi sums over R and under the assumption that the generating additive character of R is trivial on maximal ideal of R, we obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums.

Keywords

References

  1. B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998.
  2. S. Fan and W. Han, Character sums over Galois rings and primitive polynomials over finite fields, Finite Fields Appl. 10 (2004), no. 1, 36-52. https://doi.org/10.1016/S1071-5797(03)00041-8
  3. K. F. Ireland and M. I. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer-Verlag, New York, 1982.
  4. H. Ishibashi, The Terwilliger algebras of certain association schemes over the Galois rings of characteristic 4, Graphs Combin. 12 (1996), no. 1, 39-54. https://doi.org/10.1007/BF01858443
  5. Y. H. Jang and S. P. Jun, The Gauss sums over Galois rings and its absolute values, Korean J. Math. 26 (2018), no. 3, 519-535. https://doi.org/10.11568/kjm.2018.26.3.519
  6. J. Li, S. Zhu, and K. Feng, The Gauss sums and Jacobi sums over Galois ring GR($p^2$, r), Sci. China Math. 56 (2013), no. 7, 1457-1465. https://doi.org/10.1007/s11425-013-4629-6
  7. R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, London, 1997.
  8. B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
  9. Y. Oh and H. J. Oh, Gauss sums over Galois rings of characteristic 4, Kangweon-Kyungki Math. Jour. 9 (2001), no. 1, 1-7.
  10. Z.-X. Wan, Lectures on Finite Fields and Galois Rings, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. https://doi.org/10.1142/5350
  11. J. Wang, On the Jacobi sums modulo $P^n$, J. Number Theory 39 (1991), no. 1, 50-64. https://doi.org/10.1016/0022-314X(91)90033-8
  12. J. Wang, On the Jacobi sums for finite commutative rings with identity, J. Number Theory 48 (1994), no. 3, 284-290. https://doi.org/10.1006/jnth.1994.1068
  13. M. Yamada, Distance-regular digraphs of girth 4 over an extension ring of Z/4Z, Graphs Combin. 6 (1990), no. 4, 381-394. https://doi.org/10.1007/BF01787706