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THE JACOBI SUMS OVER GALOIS RINGS

AND ITS ABSOLUTE VALUES

Young Ho Jang

Abstract. The Galois ring R of characteristic pn having pmn elements

is a finite extension of the ring of integers modulo pn, where p is a prime
number and n,m are positive integers. In this paper, we develop the

concepts of Jacobi sums over R and under the assumption that the gen-

erating additive character of R is trivial on maximal ideal of R, we obtain
the basic relationship between Gauss sums and Jacobi sums, which allows

us to determine the absolute value of the Jacobi sums.

1. Introduction

Throughout this paper, p will denote a fixed prime number and n,m positive
integers. We set q = pm. Let Z, C, C1, a, Fq, Zpn and GR(pn,m) be the
ring of integers, the field of complex numbers, the unit circle in the complex
plane, the complex conjugate of a ∈ C, the finite field of order q, the ring of
integers modulo pn and the Galois ring of characteristic pn having qn elements,
respectively.

Jacobi sums over finite fields and finite rings were introduced and studied
by many mathematicians. For the detailed story and relative references see
[1, 3, 7]. In particular, in [11, 12] Wang studied a general theory of Jacobi
sums over residue class rings and finite commutative rings with identity. In
[4], Ishibashi defined the Gauss sums and Jacobi sums over GR(22,m) to find
relations between the irreducible modules of the Terwilliger algebra and the
Jacobi sums over the local ring. In [6], Jin et al. provided explicit description
on the Gauss sums and Jacobi sums over GR(p2,m), and showed that the
values of these sums can be reduced to the Gauss sums and Jacobi sums over
Fq for all non-trivial cases. Also, in [5], Jang and Jun studied the Gauss sums
over GR(pn,m) under the assumption that the generating additive character
of GR(pn,m) is trivial on maximal ideal of GR(pn,m). As a follow-up to the
previous work [5], we continue that line of research in this paper. The purpose
of this paper is to develop the concepts of Jacobi sums over GR(pn,m) and
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under the assumption that the generating additive character of GR(pn,m) is
trivial on maximal ideal of GR(pn,m), we obtain the basic relationship between
Gauss sums and Jacobi sums, which allows us to determine the absolute value
of the Jacobi sums. Many of our results are exact analogues of those holding
over Fq. However, their proofs are complicated by the change in significance of
the elements, which may be zero divisors in GR(pn,m).

We conclude this section by recalling some basic properties of the Galois ring
R = GR(pn,m). These have been well documented in [8, 10]. R is a local ring
having unique maximal ideal M = pR and |M | = qn−1. The group of units R∗

of R contains a unique cyclic group of order q−1 (see [8, Theorem XVI.9]). If ξ
is a generator of this group, then, by [8, Theorem XVIII.2], R∗ = T ∗× (1+M)
where T ∗ = 〈ξ〉 is the cyclic group of order q−1 and 1+M is the multiplicative
p-group of order qn−1. The set T = {0} ∪ T ∗ = {0, 1, ξ, . . . , ξq−2} is called the
Teichmüller set of R. Every element z ∈ R has a unique p-adic representation:

(1) z = z0 + z1p+ · · ·+ zn−1p
n−1, where zi ∈ T for 0 ≤ i ≤ n− 1.

Moreover, z ∈ R∗ if and only if z0 6= 0 and z ∈ M if and only if z0 = 0. Any
element of R\{0} is either a unit or a zero divisor. Since the zero divisors in
R are those elements divisible by p, any element z ∈ R\{0} can be written as

(2) z = pku, u ∈ R∗, 0 ≤ k ≤ n− 1.

For any Galois ring R the trace mapping Tr : R→ Zpn is defined by

(3) Tr

(
n−1∑
i=0

zip
i

)
=

n−1∑
i=0

(zi + zpi + · · ·+ zp
m−1

i )pi.

Tr is an epimorphism of Zpn -modules and Tr can be reduced by the mod-p
reduction map to the trace mapping tr : Fq → Fp of finite fields.

2. Characters of Galois rings and Gauss sums over Galois rings

An additive character of R is a homomorphism from the additive group of
R to C1. Using (3), for any x, y ∈ R, the additive characters of R are given by

(4) ψx(y) = e2πiTr(xy)/pn ,

different x’s affording different additive characters. In fact, {ψx}x∈R consists
of all additive characters of R in [2, Lemma 6]. We see that ψ0 is the trivial

additive character of R, ψx(y) = ψ1(xy), ψx(y) = ψx(−y) and ψ(= ψ1) is called

the generating additive character of R. Let R̂+ denote the group of additive
characters on R.

A multiplicative character χ of R∗ is a homomorphism from the multiplica-
tive group R∗ to C1. We see that χ(1) = 1, χ(x) is a (q − 1)qn−1-th root of

unity and χ−1(x) = χ(x−1) = χ(x)−1 = χ(x) = χ(x). We extend χ as the
character of R by defining χ(M) = 0. We call this the multiplicative character
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of R. The trivial character χ0 of R is defined by χ0(R∗) = 1. Let R̂∗ denote
the group of multiplicative characters on R.

Remark 2.1. In [9], the authors extend χ as the character of R = GR(22,m)
by defining χ(M) = 1 for χ = χ0 and χ(M) = 0 for χ 6= χ0; this is different
from the definition we have given here.

Remark 2.2. Since R∗ = T ∗ × (1 +M), we know that R̂∗ = T̂ ∗ × ̂(1 +M). In
particular, the multiplicative characters χ of R that vanish on T ∗ (i.e., χ(α) = 1
for α ∈ T ∗) are in one-to-one correspondence with the multiplicative characters
of 1 +M . Particularly, for R = GR(p2,m), from the p-adic representation (1)

z = z0 + z1p (z0, z1 ∈ T ), M = pT

and

(1 +M, ·) = (1 + pT , ·) ∼= (Fq,+), 1 + px 7−→ x = x mod p for x ∈ T .

Hence multiplicative characters χ ∈ R̂∗ that vanish on T ∗ are given by

(5) χ(1 + px) = ϕa(x) (x ∈ T , a, x ∈ Fq),

where ϕa is an additive character of Fq defined by

(6) ϕa(x) = e2πitr(ax)/p for all a, x ∈ Fq.

Remark 2.3. Let G be a finite abelian group with identity element 1G and Ĝ
an abelian group of characters of G. It is well known in [7, Theorem 5.4] that
if f is a nontrivial character of G, then

(7)
∑
g∈G

f(g) = 0.

Denote by CR the vector space over C of all functions from R to C. This is
an inner product space with Hermitian inner product 〈 , 〉 defined for f, g ∈ CR
by

〈f, g〉 =
∑
x∈R

f(x)g(x).

Then the set {δx |x ∈ R} of characteristic functions defined by

δx(y) =

{
1 if x = y
0 if x 6= y

forms an orthonormal basis for CR, with 〈δx, δy〉 = δx(y). Hence CR is a qn-
dimensional C-vector space. Also, additive characters ψx of R defined by (4)
are also orthogonal in this inner product space,

(8) 〈ψx, ψy〉 =
∑
s∈R

ψx(s)ψy(s) =
∑
s∈R

ψx−y(s) =

{
qn if x = y
0 if x 6= y

(by (7))
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and form an orthogonal basis for CR. Since χ ∈ CR, hence χ is a linear
combination of the additive characters of R. More precisely, for a nontrivial

character χ ∈ R̂∗, we have

(9) χ =
1

qn

∑
x∈R

G(χ, ψx)ψx,

where

(10) G(χ, ψx) := 〈χ, ψx〉 =
∑
y∈R∗

χ(y)ψx(y) =
∑
y∈R∗

χ(y)ψ(xy),

which is called the Gauss sum over R.
The elementary properties of Gauss sums over R in accordance with condi-

tions of characters of R investigated in [5]. In particular, under the assumption

that ψ ∈ R̂+ is trivial on M , the authors computed the modulus of G(χ, ψx).
The following two results has been proved in [5].

Proposition 2.4 ([5, Lemma 3.1]). Let χ ∈ R̂∗ be a nontrivial character. Then

(11) G(χ, ψx) =

{
χ(x)G(χ, ψ) if x ∈ R∗,
0 if x ∈M and ψ ∈ R̂+ is trivial on M.

Proposition 2.5 ([5, Theorem 3.3]). Let χ ∈ R̂∗ be a nontrivial character. If

ψ ∈ R̂+ is trivial on M , then

(12) |G(χ, ψx)|2 =

{
qn if x ∈ R∗,
0 if x ∈M.

Proposition 2.6. Let χ ∈ R̂∗ be a nontrivial character. If ψ ∈ R̂+ is trivial
on M , then

(13) G(χ, ψ)G(χ, ψ) = χ(−1)qn.

Proof. From (11) we have∑
x∈R

G(χ, ψx)G(χ, ψx) =
∑
x∈R∗

G(χ, ψx)G(χ, ψx) = G(χ, ψ)G(χ, ψ)
∑
x∈R∗

1

= (q − 1)qn−1G(χ, ψ)G(χ, ψ).

On the other hand, (10) yields that∑
x∈R

G(χ, ψx)G(χ, ψx) =
∑
x∈R

∑
y∈R∗

χ(y)ψx(y)
∑
z∈R∗

χ(z)ψx(z)

=
∑
y∈R∗

∑
z∈R∗

χ(y)χ(z)
∑
x∈R

ψx(y + z)

= χ(−1)
∑
z∈R∗

∑
x∈R

1 +
∑

y,z∈R∗

y+z 6=0

χ(yz−1)
∑
x∈R

ψx(y + z)

= χ(−1)(q − 1)qn−1qn (by (7)).
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By comparing above two formulas we have (13). �

Proposition 2.7. Let χ ∈ R̂∗ be a nontrivial character. If ψ ∈ R̂+ is trivial
on M , then

(14) χ =
1

qn
G(χ, ψ)

∑
x∈R∗

χ(x−1)ψx.

Proof. From (9) and (11), it is obvious. �

3. Jacobi sums over Galois rings

Let χ1, . . . , χl ∈ R̂∗. For α ∈ R, a sum of the form

(15) Jα(χ1, . . . , χl) =
∑

s1,...,sl∈R∗

s1+···+sl=α

χ1(s1) · · ·χl(sl)

is called a Jacobi sum relative to χ1, . . . , χl. If l−1 of the terms in s1+· · ·+sl is
chosen, the last term is uniquely determined by the requirement that whole sum

equals α. Thus (15) contains
(
(q − 1)qn−1

)l−1
terms. It is easy to show that

if σ is a permutation of {1, . . . , l}, then Jα(χσ(1), . . . , χσ(l)) = Jα(χ1, . . . , χl).
We drop the subscript α from Jα when α = 1. Then

J(χ1, . . . , χl) =
∑

s1,...,sl∈R∗

s1+···+sl=1

χ1(s1) · · ·χl(sl)

= χ1 · · ·χl(−1)
∑

s1,...,sl∈R∗

s1+···+sl+1=0

χ1(s1) · · ·χl(sl).(16)

For α ∈ R\{0}, let α = pku, 0 ≤ k ≤ n− 1, u ∈ R∗ as in (2). Then

Jpku(χ1, . . . , χl) = χ1 · · ·χl(u)Jpk(χ1, . . . , χl)

and

Ju(χ1, . . . , χl) = χ1 · · ·χl(u)J(χ1, . . . , χl).

In particular, J(χ1) = χ1(1) = 1 and for l = 2, we have

J(χ1, χ2) =
∑

s1,s2∈R∗

s1+s2=1

χ1(s1)χ2(s2) = χ1χ2(−1)
∑

s1,s2∈R∗

s1+s2+1=0

χ1(s1)χ2(s2)

=
∑

x∈R∗\(1+M)

χ1(x)χ2(1− x).(17)

The following two theorems are proved in [13, Theorem 4] for GR(22,m)
and in [6, Theorem 4.1] for GR(p2,m); the proofs of the more general results
follow along precisely the same lines.
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Theorem 3.1. For χ1, χ2 ∈ R̂∗,

J(χ1, χ2) =


(q − 2)qn−1 if χ1 = χ2 = χ0,
0 if χ2 = χ0 and χ1(1 +M) 6= 1,
−qn−1 if χ2 = χ0, χ1 6= χ0 and χ1(1 +M) = 1,
−χ1(−1)qn−1 if χ1 6= χ0, χ1χ2 = χ0 and χ1(1 +M) = 1,
0 if χ1 6= χ0, χ1χ2 = χ0 and χ1(1 +M) 6= 1.

Proof. (i) From (17), if χ1 = χ2 = χ0, then J(χ1, χ2) = (q − 2)qn−1.
(ii) If χ2 = χ0 and χ1(1 +M) 6= 1, then χ1 6= χ0 and

J(χ1, χ2) =
∑

x∈R∗\(1+M)

χ1(x) =
∑
x∈R∗

χ1(x)−
∑

x∈1+M

χ1(x) = 0 (by (7)).

(iii) If χ2 = χ0, χ1 6= χ0 and χ1(1 +M) = 1, then

J(χ1, χ2) =
∑

x∈R∗\(1+M)

χ1(x) =
∑
x∈R∗

χ1(x)−
∑

x∈(1+M)

1 = −qn−1 (by (7)).

(iv) If χ1 6= χ0 and χ1χ2 = χ0, then χ2 = χ−1
1 = χ1 and

J(χ1, χ2) =
∑

x∈R∗\(1+M)

χ1(x)χ1(1− x)

= χ1(−1)
∑

x∈R∗\(1+M)

χ1(x(x− 1)−1) (let z = x(x− 1)−1)

= χ1(−1)
∑

z∈R∗\(1+M)

χ1(z)

= −χ1(−1)
∑

z∈(1+M)

χ1(z) (by (7))

=

{
−χ1(−1)qn−1 if χ1(1 +M) = 1,
0 if χ1(1 +M) 6= 1 (by (7)),

where the third equality follows that for each x ∈ R∗\(1 + M) multiplying x
by (x− 1)−1 permutes R∗\(1 +M). �

Theorem 3.2. For k = 1, 2, . . . , n− 1 and χ1, χ2 ∈ R̂∗,

Jpk(χ1, χ2)

=
∑
x∈R∗

χ1(x)χ2(pk − x)

=


(q − 1)qn−1 if χ1 = χ2 = χ0,
0 if χ2 = χ0 and χ1 6= χ0,
χ1(−1)(q − 1)qn−1 if χ1 6= χ0, χ1χ2 = χ0 and χ1(1 +M) = 1,
χ1(−1)qkS(k) if χ1 6= χ0, χ1χ2 = χ0 and χ1(1 +M) 6= 1,
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where

(18) S(k) =
∑
z0∈T ∗

z1,...,zn−k−1∈T

χ1

(
1 + pkz0 + pk+1z1 + · · ·+ pn−k−1zn−k−1

)
.

Proof. (i) If χ1 = χ2 = χ0, then Jpk(χ1, χ2) =
∑
x∈R∗ 1 = (q − 1)qn−1.

(ii) If χ2 = χ0 and χ1 6= χ0, then, by (7), Jpk(χ1, χ2) =
∑
x∈R∗ χ1(x) = 0.

(iii) If χ1 6= χ0 and χ1χ2 = χ0, then χ2 = χ−1
1 = χ1 and

Jpk(χ1, χ2) =
∑
x∈R∗

χ1(x)χ1(pk − x)

= χ1(−1)
∑
x∈R∗

χ1(x(x− pk)−1) (since x− pk ∈ R∗)

= χ1(−1)
∑
x∈R∗

χ1(1 + pk(x− pk)−1) (let z = (x− pk)−1)

= χ1(−1)
∑
z∈R∗

χ1

(
1 + pkz

)
.

Since pkz ∈M for all z ∈ R∗, if χ1(1 +M) = 1, then

Jpk(χ1, χ2) = χ1(−1)(q − 1)qn−1.

Assume χ1(1+M) 6= 1. Let z = z0+z1p+· · ·+zn−1p
n−1, z0 ∈ T ∗, z1, . . . , zn−1

∈ T as in (1). Then we have

Jpk(χ1, χ2)

= χ1(−1)
∑
z0∈T ∗

z1,...,zn−1∈T

χ1

(
1 + pk(z0 + pz1 + · · ·+ · · ·+ pn−1zn−1)

)
= χ1(−1)qk

∑
z0∈T ∗

z1,...,zn−k−1∈T

χ1

(
1 + pkz0 + · · ·+ pn−k−1zn−k−1

)
.

This completes the proof. �

Remark 3.3. Let R = GR(p2,m) and χ1, χ2 ∈ R̂∗. If χ1 6= χ0, χ1χ2 = χ0 and
χ1(1 +M) 6= 1, then from (18) we have

S(1) =
∑
z0∈T ∗

χ1(1 + pz0) =
∑
z0∈T

χ1(1 + pz0)− 1

=
∑
z̄0∈Fq

ϕa(z̄0)− 1 (from (5) in Remark 2.2)

= −1 (by ϕa ∈ F̂q is nontrivial and (7)).

Thus Jp(χ1, χ2) = −χ1(−1)q, which is given in [6, Theorem 4.1].

Proposition 3.4. Let χ1, . . . , χl ∈ R̂∗.
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(i) For l ≥ 3,

J(χ1, . . . , χl) =

{ (
(q − 1)qn−1

)l−1
if χ1, . . . , χl are all trivial,

0 if some but not all of χi are trivial.

(ii) For l ≥ 2, if χl is nontrivial, then

J0(χ1, . . . , χl) =
∑

s1,...,sl∈R∗

s1+···+sl=0

χ1(s1) · · ·χl(sl)

=

{
0 if χ1 · · ·χl 6= χ0,
χl(−1)(q − 1)qn−1J(χ1, . . . , χl−1) if χ1 · · ·χl = χ0.

Proof. For (i), if l− 1 of the terms in s1 + · · ·+ sl = 1 is chosen, the last term

is uniquely determined. These l − 1 terms can be chosen in
(
(q − 1)qn−1

)l−1

ways, this proves part one. For the second part we have ordered the characters
in such way that χ1, . . . , χj are nontrivial and χj+1, . . . , χl are trivial, where
1 ≤ j ≤ l − 1. Then

J(χ1, . . . , χl) =
∑

s1,...,sl∈R∗

s1+···+sl=1

χ1(s1) · · ·χl(sl) =
∑

s1,...,sl∈R∗

s1+···+sl=1

χ1(s1) · · ·χj(sj)

=
∑

s1,...,sj∈R∗

χ1(s1) · · ·χj(sj)
∑

sj+1,...,sl∈R∗

sj+1+···+sl=1−s1−···−sj

1

=
(
(q − 1)qn−1

)l−j−1 ∑
s1,...,sj∈R∗

χ1(s1) · · ·χj(sj)

=
(
(q − 1)qn−1

)l−j−1

( ∑
s1∈R∗

χ1(s1)

)
· · ·

 ∑
sj∈R∗

χj(sj)


= 0 (by (7)).

To prove (ii), we have

J0(χ1, . . . , χl)

=
∑

s1,...,sl∈R∗

s1+···+sl=0

χ1(s1) · · ·χl(sl)

=
∑
sl∈R∗

 ∑
s1,...,sl−1∈R∗

s1+···+sl−1=−sl

χ1(s1) · · ·χl−1(sl−1)

χl(sl) (let si = −slti)

= χ1 · · ·χl−1(−1)

 ∑
t1,...,tl−1∈R∗

t1+···+tl−1=1

χ1(t1) · · ·χl−1(tl−1)


( ∑
sl∈R∗

χ1 · · ·χl(sl)

)
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=

{
0 if χ1 · · ·χl 6= χ0,
χl(−1)(q − 1)qn−1J(χ1, . . . , χl−1) if χ1 · · ·χl = χ0,

where the last equality follows from (7). �

Theorem 3.5. Let χ1, . . . , χl+1 ∈ R̂∗ be nontrivial characters with χ1 · · ·χl+1

= χ0. If ψ ∈ R̂+ is trivial on M , then

J(χ1, . . . , χl) =
1

qn
χl+1(−1)G(χ1, ψ) · · ·G(χl+1, ψ)(19)

=
G(χ1, ψ) · · ·G(χl, ψ)

G(χ1 · · ·χl, ψ)
(20)

and

(21) |J(χ1, . . . , χl)|2 = qn(l−1).

Proof. Since χ1 · · ·χl+1 = χ0, (16) implies that

J(χ1, . . . , χl)

= χ1 · · ·χl(−1)
∑

s1,...,sl∈R∗

s1+···+sl+1=0

χ1(s1) · · ·χl(sl)

=
χl+1(−1)

(q − 1)qn−1

∑
sl+1∈R∗

(χ1 · · ·χl+1)(sl+1)
∑

s1,...,sl∈R∗

s1+···+sl+1=0

χ1(s1) · · ·χl(sl)

=
χl+1(−1)

(q − 1)qn−1

∑
sl+1∈R∗

∑
s1,...,sl∈R∗

s1+···+sl+1=0

χ1(sl+1s1) · · ·χl(sl+1sl)χl+1(sl+1)

=
χl+1(−1)

(q − 1)qn−1

∑
u1,...,ul+1∈R∗

u1+···+ul+1=0

χ1(u1) · · ·χl(ul)χl+1(ul+1).(22)

From (22) and (14) in Proposition 2.8 we have

χl+1(−1)(q − 1)qn−1J(χ1, . . . , χl)

=
∑

u1,...,ul+1∈R∗

u1+···+ul+1=0

(
1

qn
G(χ1, ψ)

∑
t1∈R∗

χ1(t−1
1 )ψt1(u1)

)

× · · · ×

 1

qn
G(χl+1, ψ)

∑
tl+1∈R∗

χl+1(t−1
l+1)ψtl+1

(ul+1)


=

1

qn(l+1)
G(χ1, ψ) · · ·G(χl+1, ψ)

∑
t1,...,tl+1∈R∗

χ1(t−1
1 ) · · ·χl+1(t−1

l+1)
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×
∑

u1,...,ul+1∈R∗

u1+···+ul+1=0

ψ(t1u1 + · · ·+ tl+1ul+1).

On the other hand, we have∑
u1,...,ul+1∈R∗

u1+···+ul+1=0

ψ(t1u1 + · · ·+ tl+1ul+1)

=
∑

u1,...,ul+1∈R∗

u1+···+ul+1=0

ψ(u1(t1 − tl+1) + · · ·+ ul(tl − tl+1) + tl+1(u1 + · · ·+ ul+1))

=
∑

u1,...,ul∈R∗

ψ(u1(t1 − tl+1)) · · ·ψ(ul(tl − tl+1)).

Hence

χl+1(−1)(q − 1)qn−1J(χ1, . . . , χl)

=
1

qn(l+1)
G(χ1, ψ) · · ·G(χl+1, ψ)

∑
t1,...,tl+1∈R∗

χ1(t−1
1 ) · · ·χl+1(t−1

l+1)

×
∑

u1,...,ul∈R∗

ψ(u1(t1 − tl+1)) · · ·ψ(ul(tl − tl+1))

=
1

qn(l+1)
G(χ1, ψ) · · ·G(χl+1, ψ)

×
∑

tl+1∈R∗

χl+1(t−1
l+1)

l∏
i=1

{ ∑
ti∈R∗

χi(t
−1
i )

∑
ui∈R∗

ψ(ui(ti − tl+1))

}
.

Since for each tl+1 ∈ R∗∑
ti∈R∗

χi(t
−1
i )

∑
ui∈R∗

ψ(ui(ti − tl+1))

= χi(t
−1
l+1)

∑
ui∈R∗

1 +
∑
ti∈R∗

ti−tl+1 6=0

χi(t
−1
i )

∑
ui∈R∗

ψ(ui(ti − tl+1))

= (q − 1)qn−1χi(t
−1
l+1) +

∑
ti∈R∗

ti−tl+1 6=0

χi(t
−1
i )

∑
ui∈R∗

ψ(ui(ti − tl+1))

= (q − 1)qn−1χi(t
−1
l+1)

+
∑
ti∈R∗

ti−tl+1 6=0

χi(t
−1
i )

{∑
ui∈R

ψti−tl+1
(ui)−

∑
ui∈M

ψ(ui(ti − tl+1))

}

= (q − 1)qn−1χi(t
−1
l+1)− qn−1

∑
ti∈R∗

ti−tl+1 6=0

χi(t
−1
i )
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= (q − 1)qn−1χi(t
−1
l+1)− qn−1

( ∑
ti∈R∗

χi(t
−1
i )− χi(t−1

l+1)

)
= (q − 1)qn−1χi(t

−1
l+1) + qn−1χi(t

−1
l+1)

= qnχi(t
−1
l+1),

where the fourth equality follows from (7) and ψ(ui(ti − tl+1)) = 1 (since
ti − tl+1 6= 0 and ui(ti − tl+1) ∈ M for all ui ∈ M), and where the sixth
equality follows from (7). Hence

χl+1(−1)(q − 1)qn−1J(χ1, . . . , χl)

=
1

qn(l+1)
G(χ1, ψ) · · ·G(χl+1, ψ)

qnl ∑
tl+1∈R∗

(χ1 · · ·χl+1)(t−1
l+1)


=

1

qn(l+1)
G(χ1, ψ) · · ·G(χl+1, ψ)qnl(q − 1)qn−1

=
q − 1

q
G(χ1, ψ) · · ·G(χl+1, ψ).

Since χ1 · · ·χl = χl+1 ∈ R̂∗ is nontrivial, by (12) in Proposition 2.6 we have
G(χ1 · · ·χl, ψ) 6= 0. Thus we have

J(χ1, . . . , χl)

=
1

qn
χl+1(−1)G(χ1, ψ) · · ·G(χl+1, ψ)

=
1

qn
χl+1(−1)G(χ1, ψ) · · ·G(χ1 · · ·χl, ψ)

=
1

qn
χ1 · · ·χl(−1)G(χ1, ψ) · · ·G(χl, ψ)

χ1 · · ·χl(−1)qn

G(χ1 · · ·χl, ψ)
(by (11))

=
G(χ1, ψ) · · ·G(χl, ψ)

G(χ1 · · ·χl, ψ)
.

Again, by (12) in Proposition 2.6 we have |J(χ1, . . . , χl)|2 = qn(l−1). �

Corollary 3.6. Let χ1, . . . , χl+1 ∈ R̂∗ be nontrivial characters with χ1 · · ·χl+1

= χ0. If ψ ∈ R̂+ is trivial on M , then

J(χ1, . . . , χl+1) = −χl+1(−1)J(χ1, . . . , χl) + (q − 1)

n−1∑
k=1

Jpk(χ1, . . . , χl+1).

Proof. From (10) and (15), we have

G(χ1, ψ) · · ·G(χl+1, ψ)

=

( ∑
s1∈R∗

χ1(s1)ψ(s1)

)
· · ·

 ∑
sl+1∈R∗

χl+1(sl+1)ψ(sl+1)
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=
∑

s1,...,sl+1∈R∗

χ1(s1) · · ·χl+1(sl+1)ψ(s1 + · · ·+ sl+1)

=
∑
s∈R

 ∑
s1,...,sl+1∈R∗

s1+···+sl+1=s

χ1(s1) · · ·χl+1(sl+1)

ψ(s)

= J0(χ1, . . . , χl+1) +
∑

s∈R\{0}

Js(χ1, . . . , χl+1)ψ(s) (let s = pku as in (2))

= J0(χ1, . . . , χl+1) +

n−1∑
k=0

∑
u∈R∗

χ1 · · ·χl+1(u)Jpk(χ1, . . . , χl+1)ψ(pku)

= J0(χ1, . . . , χl+1) +

n−1∑
k=0

Jpk(χ1, . . . , χl+1)
∑
u∈R∗

ψ(pku)

= J0(χ1, . . . , χl+1) + J(χ1, . . . , χl+1)

(∑
u∈R

ψ(u)−
∑
u∈M

ψ(u)

)

+

n−1∑
k=1

Jpk(χ1, . . . , χl+1)
∑
u∈R∗

1 (since ψ(pku) = 1 for all k = 1, . . . , n− 1)

= J0(χ1, . . . , χl+1)− qn−1J(χ1, . . . , χl+1) + (q − 1)qn−1
n−1∑
k=1

Jpk(χ1, . . . , χl+1),

where the last equality follows from (7). Hence from Proposition 3.4(ii) and
(19) in Theorem 3.5 we have

χl+1(−1)qnJ(χ1, . . . , χl)

= χl+1(−1)(q − 1)qn−1J(χ1, . . . , χl)− qn−1J(χ1, . . . , χl+1)

+ (q − 1)qn−1
n−1∑
k=1

Jpk(χ1, . . . , χl+1),

which completes the proof. �
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