• Title/Summary/Keyword: n-ZnO

Search Result 916, Processing Time 0.031 seconds

The Effect of Sintering Conditions on Microstructures and Magnetic Properties of Mn-Zn Ferrite (Mn-Zn Ferrite의 소결조건이 미세조직 및 자기특성에 미치는 영향)

  • 홍순형;변수일;권오종
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.1
    • /
    • pp.3-12
    • /
    • 1979
  • The effects of sintering temperature and sintering atmosphere on magnetic properties and microstructuresof Mn-Zn ferrites have been studied. Mixture of 52.8mole% $Fe_2O_3$, 26.4mole% MnO, 15.1mole0% ZnO and 5.7mole% NiO was prepared, and 0.1mole% CaO, 0.02mole% $SiO_2$ were added as minor additives. After calcining and ball milling the powder was granulated for compacting. The specimens were sintered at $1, 250^{\circ}$, $1, 300^{\circ}$and 1, 35$0^{\circ}C$ in the various atmosphere of $N_2$, $N^_2\DIV0.6% O_2$, $N_2+2.7% O_2$, $N_2+4.1% O_2$, $N^2+8.2% O_2$ and air for 3 hours and cooled in $N_2$ atmosphere. The grian growth rate and densities increase as sintering temperature and oxygen content of atmosphere increase. At the sintering temperature of $1, 250^{\circ}C$ the initial permeabilities increase as oxygen content of atmosphere increase. At the sintering temperature of$ 1, 300^{\circ}$and $1, 350^{\circ}$ the initial permeabilities show maximum values at $N_2+4.1% O_2$ atmosphere. The secondary peaks of initial permeabilities are observed between 100$^{\circ}$and 20$0^{\circ}C$, and the positions of secondary peaks move to higher temperature as oxygen content of atmosphere increases. Q-factors decrease as sintering temperature increases and oxygen content of atmosphere decreases.

  • PDF

Properties of Powder and Phosphor as function of ZnO : Zn Oxygen Partial Pressure Prepared by Glycine Nitrate Process (GNP 방식으로 제조한 ZnO : Zn의 산소분압에 따른 분말특성 및 형광특성)

  • Choi, Woo-Sung;Park, Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1520-1522
    • /
    • 1999
  • 저 전압용 형광체는 최근에 활발히 연구가 진행되고 있으며 가장 대표적인 형광체가 ZnO : Zn 녹색 형광체이다. ZnO : Zn 형광체는 자체발광형 형광체로써 ZnO을 환원분위기 하에서 열처리를 함으로써 얻을 수 있다. 본 연구에서는 자발착화 연소반응법(Glycine Nitrate Process)을 이용하여 ZnO : Zn 분말을 합성하고 형광특성 및 분말특성을 알아보았다. 출발물질로는 Zn Nitrate와 Glycine을 이용하였고 자발연소 반응이 발생하는데 적절한 글리신의 양을 확인하기 위해서 글리신과 양이온의 비를 변화시키며 ZnO를 합성하였다. 그리고 Zn Excess가 생겨난 양과 그에 따른 형광특성을 관찰하기 위해 $N_2$ 분위기에서 각기 $500^{\circ}C,\;750^{\circ}C,\;950^{\circ}C$의 온도에서 열처리를 행하였다. 제조된 ZnO 분말의 입자형태와 결정상태는 SEM과 XRD를 이용하여 분석하였고 TG-DTA를 측정하여 열처리 온도에 따른 질량감소(ZR excess)를 관찰하였다. 또 Particle size analyzer로 분말의 크기를 알아보았고 형광체로써의 발광특성을 살펴보기 위해 PL을 이용하여 발광피크를 관찰하였다.

  • PDF

Inverted CdSe@ZnS Quantum Dots Light-Emitting Diode using Low-Work Function Polyethylenimine Ethoxylated (PEIE) modified ZnO

  • Kim, Choong Hyo;Kim, Hong Hee;Hwang, Do Kyung;Suh, Kwang S;Park, Cheol Min;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.148-148
    • /
    • 2015
  • Over the past several years, Colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been developed for the future of optoelectronic applications. An inverted-type quantum-dot light-emitting-diode (QDLED), employing low work function organic material polyethylenimine ethoxylated(PEIE) (<10 nm)[1] modified ZnO nanoparticles (NPs) as electron injection and transport layer, was fabricated by all solution processing method, instead of electrode in the device. The PEIE surface modifier incorporated on the top of the ZnO NPs film, facilitates the enhancement of both electorn injection into the CdSe-ZnS QD emissive layer by lowering the workfunction of ZnO from 3.58eV to 2.87eV and charge balance on the QD emitter. In this inverted QDLEDs, blend of poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo) and poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] are used as hole transporting layer (HTL) to improve hole transporting property. At the operating voltage of 7.5 V, the QDLED device emitted spectrally orange color lights with high luminance up to 11110 cd/m2, and showed current efficiency of 2.27 cd/A.[2]

  • PDF

Epitaxial Growth of Three-Dimensional ZnO and GaN Light Emitting Crystals

  • Yang, Dong Won;Park, Won Il
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.108-115
    • /
    • 2018
  • The increasing demands for three-dimensional (3D) electronic and optoelectronic devices have triggered interest in epitaxial growth of 3D semiconductor materials. However, most of the epitaxially-grown nano- and micro-structures available so far are limited to certain forms of crystal arrays, and the level of control is still very low. In this review, we describe our latest progress in 3D epitaxy of oxide and nitride semiconductor crystals. This paper covers issues ranging from (i) low-temperature solution-phase synthesis of a well-regulated array of ZnO single crystals to (ii) systematic control of the axial and lateral growth rate correlated to the diameter and interspacing of nanocrystals, as well as the concentration of additional ion additives. In addition, the critical aspects in the heteroepitaxial growth of GaN and InGaN multilayers on these ZnO nanocrystal templates are discussed to address its application to a 3D light emitting diode array.

Properties of ZnO thin film grown on $Al_2O_3$ substrate pretremented by nitrogen ion beam (이온빔으로 질화처리된 사파이어기판위에 성장한 ZnO박막의 특성)

  • Park, Byung-Jun;Jung, Yeon-Sik;Park, Jong-Young;Choi, Du-Jin;Choi, Won-Kook;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.413-416
    • /
    • 2004
  • In this study, zinc oxide(ZnO) having large misfit(18.2%) with sapphire was tried to be grown on very thin nitride buffer layers. For the creation of various kinds of nitride buffer layer, sapphire surface was modified by an irradiation of nitrogen ion beam with low energy generated from stationary plasma thruster(SPT) at room temperature. After the irradiation of ion beam, Al-N and Al-O-N bonding was identified to be formed as nitride buffet layers. Surface morphology was measured by AFM and then ZnO growth was followed by pulsed laser deposition(PLD). Their properties are analyzed by XRD, AFM, TEM, and PL. We observed that surface morphology was improved and deep level emission related to defects was almost vanished in PL spectra from the ZnO grown on nitride buffer layer.

  • PDF

Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 System Glass for AlN Substrate (Electrical Properties of Eco-Friendly RuO2-Based Thick-Film Resistors Containing CaO-ZnO-B2O3-Al2O3-SiO2 계 유리가 적용된 질화알루미늄 기판용 RuO2계 친환경 후막저항의 전기적 특성 연구)

  • Kim, Min-Sik;Kim, Hyeong-Jun;Kim, Hyung-Tae;Kim, Dong-Jin;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.467-473
    • /
    • 2010
  • The objective of this study is to prepare lead-free thick film resistor (TFR) paste compatible with AlN substrate for hybrid microelectronics. For this purpose, CaO-ZnO-$B_2O_3-Al_2O_3-SiO_2$ glass system was chosen as a sintering aid of $RuO_2$. The effects of the weight ratio of CaO to ZnO in glass composition, the glass content and the sintering temperature on the electrical properties of TFR were investigated. $RuO_2$ as a conductive and glass powder were dispersed in an organic binder to obtain printable paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C$/min in an ambient atmosphere. The addition of ZnO to glass composition and sintering at higher temperature resulted in increasing sheet resistance and decreasing temperature coefficient of resistance. Using $RuO_2$-based resistor paste containing 40 wt%glass of CaO-20.5%ZnO-25%$B_2O_3$-7%$Al_2O_3$-15%$SiO_2$ composition, it is possible to produce thick film resistor on AlN substrate with sheet resistance of $10.6\Omega/\spuare$ and the temperature coefficient of resistance of 702ppm/$^{\circ}C$ after sintering at $850^{\circ}C$.

Properties of Zinc oxide films prepared by sol-gel dip coating (Sol-gel dip coating에 의한 ZnO 투명전도막의 특성고찰)

  • 김범석;구상모;김창열
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.191-191
    • /
    • 2003
  • 가시광선영역에서 높은 광학적 투명도를 갖는 n-type 반도체인 ZnO 박막은 넓은 범위에서 응용되고 있다. 현재 ZnO 박막의 특성 향상을 위하여 여러 원소(Al, Ga)의 도핑을 시도하고 있다. 특히 Al-doped ZnO 박막은 sol-gel dip coating에 의해서도 높은 전기전도도와 투과율로 활발히 연구되고 있다 본 논문에서는 여러 도핑농도를 갖는 Al-doped ZnO 박막이 sol-gel dip coating법에 의해 준비되었다. Al-doped ZnO 박막은 zinc acetate [Zn($CH_3$COO$_2$)ㆍ2$H_2O$] powder 와 여러 도핑농도를 갖는 aluminum nitrate (Al(NO$_3$)$_3$ㆍ9$H_2O$) powder를 알코올에 용해하여 $H_2O$, Ethylene glycol, Ethylene diamine 등을 첨가하여 제조하였다 XRD와 SEM (Scanning electron microscope)이 막의 상형성 분석을 위해 이용되었으며, 가시광선 영역 투과율(UV/VIS spectrophotometer)과 표면전기저항(four point probe)이 주요 특성으로 분석되었다.

  • PDF

Ab initio Study for Electronic Property and Ferromagnetism of (Cu, N, or F)-codoped ZnO

  • Kang, Byung-Sub;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2012
  • The effects on the ferromagnetism of the O or Zn defect in Cu-doped ZnO with the concentration of 2.77-8.33% have been investigated by the first-principles calculations. The Cu doping in ZnO was calculated to be a kind of p-type ferromagnetic half-metals. When the Zn vacancy exists in Cu-doped ZnO, the Cu magnetic moment increases, while for the O vacancy it is reduced. It is noticeable that the ferromagnetic state was originated from the hybridized O(2p)-Cu(3d)-O(2p) chain formed through the p-d coupling. The carrier-mediated ferromagnetism by nitrogen or fluorine does not depend on their concentration.

Hydrogenation of Ethyl Acetate to Ethanol over Bimetallic Cu-Zn/SiO2 Catalysts Prepared by Means of Coprecipitation

  • Zhu, Ying-Ming;Shi, Xin Wang Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.141-146
    • /
    • 2014
  • A series of bimetallic Cu-Zn/$SiO_2$ catalysts were prepared via thermal decomposition of the as-synthesized $CuZn(OH)_4(H_2SiO_3)_2{\cdot}nH_2O$ hydroxides precursors. This highly dispersed Cu-solid base catalyst is extremely effective for hydrogenation of ethyl acetate to ethanol. The reduction and oxidation features of the precursors prepared by coprecipitation method and catalysts were extensively investigated by TGA, XRD, TPR and $N_2$-adsorption techniques. Catalytic activity by ethyl acetate hydrogenation of reaction temperatures between 120 and $300^{\circ}C$, different catalyst calcination and reduction temperatures, different Cu/Zn loadings have been examined extensively. The relation between the performance for hydrogenation of ethyl acetate and the structure of the Cu-solid base catalysts with Zn loading were discussed. The detected conversion of ethyl acetate reached 81.6% with a 93.8% selectivity of ethanol. This investigation of the Cu-Zn/$SiO_2$ catalyst provides a recently proposed pathway for ethyl acetate hydrogenation reaction to produce ethanol over Cu-solid base catalysts.

The Effects of Oxygen Partial Pressure and Post-annealing on the Properties of ZnO-SnO2 Thin Film Transistors (ZnO-SnO2 투명박막트랜지스터의 특성에 미치는 산소분압 및 후속열처리의 영향)

  • Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.304-308
    • /
    • 2012
  • Transparent thin film transistors (TTFT) were fabricated using the rf magnetron sputtered ZnO-$SnO_2$ films as active layers. A ceramic target whose Zn atomic ratio to Sn is 2:1 was employed for the deposition of ZnO-$SnO_2$ films. To study the post-annealing effects on the properties of TTFT, ZnO-$SnO_2$ films were annealed at $200^{\circ}C$ or $400^{\circ}C$ for 5 min before In deposition for source and drain electrodes. Oxygen was added into chamber during sputtering to raise the resistivity of ZnO-$SnO_2$ films. The effects of oxygen addition on the properties of TTFT were also investigated. 100 nm $Si_3N_4$ film grown on 100 nm $SiO_2$ film was used as gate dielectrics. The mobility, $I_{on}/I_{off}$, interface state density etc. were obtained from the transfer characteristics of ZnO-$SnO_2$ TTFTs.