Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.1.141

Hydrogenation of Ethyl Acetate to Ethanol over Bimetallic Cu-Zn/SiO2 Catalysts Prepared by Means of Coprecipitation  

Zhu, Ying-Ming (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology)
Shi, Xin Wang Li (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology)
Publication Information
Abstract
A series of bimetallic Cu-Zn/$SiO_2$ catalysts were prepared via thermal decomposition of the as-synthesized $CuZn(OH)_4(H_2SiO_3)_2{\cdot}nH_2O$ hydroxides precursors. This highly dispersed Cu-solid base catalyst is extremely effective for hydrogenation of ethyl acetate to ethanol. The reduction and oxidation features of the precursors prepared by coprecipitation method and catalysts were extensively investigated by TGA, XRD, TPR and $N_2$-adsorption techniques. Catalytic activity by ethyl acetate hydrogenation of reaction temperatures between 120 and $300^{\circ}C$, different catalyst calcination and reduction temperatures, different Cu/Zn loadings have been examined extensively. The relation between the performance for hydrogenation of ethyl acetate and the structure of the Cu-solid base catalysts with Zn loading were discussed. The detected conversion of ethyl acetate reached 81.6% with a 93.8% selectivity of ethanol. This investigation of the Cu-Zn/$SiO_2$ catalyst provides a recently proposed pathway for ethyl acetate hydrogenation reaction to produce ethanol over Cu-solid base catalysts.
Keywords
Cu-Zn/$SiO_2$; Hydrogenation; Ethyl acetate; Ethanol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Balabin, R. M.; Syunyaev, R. Z.; Karpov, S. A. Fuel. 2007, 86,323.   DOI   ScienceOn
2 Hsieha, W. D.; Chenb, R. H.; Wub, T. L.; Lina, A. T. H. Environ. 2002, 36, 403.
3 Nan, Z.; Tan, Z. C.; Sun, L. X. Energy Fuels 2004, 18, 84.   DOI   ScienceOn
4 Overend, R. P.; Chornet, E. Proceedings of the Fourth Biomass Conference of the Americas; Pergamon Press: New York, 1999; p1725.
5 Yukse, L. F.; Yuksel, B. Renew Energy 2004, 29, 1181   DOI   ScienceOn
6 March, J. Advanced Organic Chemistry: Reactions, Mechanism, and Structure; Wiley: New York, 1992.
7 Atkins, M. P.; Sharma, B. EP Patent 0, 757, 027, 1997.
8 Sano, K.; Nishiyama, M.; Suzuki, Y.; Wakabayashi, S.; Miyahara, K.; Showa Denko, K. EP Patent 0, 562, 139, 1993.
9 Sato, T.; Hagiwara, T. JP Patent 11,140,017, 1999.
10 Inui, K.; Kurabayashi, T.; Sato, S. J. Catal. 2002, 212, 207.   DOI   ScienceOn
11 Inui, K.; Kurabayashi, T.; Sato, S.; Ichikawa, N. J. Mol. Catal. A: Chem. 2004, 216, 147.   DOI   ScienceOn
12 Priscila, C. Z.; Johnatan, C.; Sonia, L.; Alexandre, B. G.; Lucia, G. A. J. Mol. Catal. A: Chem. 2011, 334, 29.   DOI   ScienceOn
13 Nagaraja, B. M.; Siva, K. V.; Shasikala, V.; Padmasri, A. H.; Sreedhar, B.; David, R. B.; Rama, R. K. S. Catal. Commun. 2003,4, 287.   DOI   ScienceOn
14 Xia, S.; Yuan, Z.; Wang, L.; Chen, P.; Hou, Z. Appl. Catal., A 2011,403, 173   DOI   ScienceOn
15 Yuan, Z.; Wang, L.; Wang, J.; Xia, S.; Chen, P.; Hou, Z.; Zheng, X. Appl. Catal., B 2011, 101, 431.   DOI   ScienceOn
16 Cortright, R. D.; Sanchez-Castillo, M.; Dumesic, J. A. Appl. Catal., B 2002, 39, 353   DOI   ScienceOn
17 Adkins, H.; Folkers, K. J. Am. Chem. Soc. 1931, 53, 1095.   DOI
18 Turek, T.; Trimm, D. L.; Cant, N. W. Catal. Rev. Sci. Eng. 1994,36, 645.   DOI   ScienceOn
19 Evans, J. W.; Cant, N. W.; Trimm, D. L.; Wainwright, M. S. Appl. Catal. 1983, 6, 355   DOI   ScienceOn
20 Evans, J. W.; Case, P. S.; Wainwright, M. S.; Trimm, D. L.; Cant, N. W. Appl. Catal. 1983, 7, 31.   DOI   ScienceOn
21 Brands, D. S.; Poels, E. K.; Bliek, A. Appl. Catal., A 1999, 184,27.
22 Yuan, P.; Liu, Z. Y.; Zhang, W. Q.; Sun, H. J.; Liu, S. C. Chinese J. Catal. 2010, 31, 769.   DOI   ScienceOn
23 He, L.; Cheng, H.; Liang, G.; Yu, Y.; Zhao, F. Appl. Catal., A 2013, 452, 88.   DOI   ScienceOn
24 Huang, H. et al., J. Ind. Eng. Chem. 2013, http://dx.doi.org/10.1016/j.jiec.2013.06.033.
25 Sung, M. K.; Mi, E. L.; Jae, W. C.; Dong, J. S.; Young, W. S. Catal. Commun. 2011, 12, 1328.   DOI   ScienceOn
26 Claus, P.; Lucas, M.; Lucke, B. Appl. Catal., A 1991, 79, 1.   DOI   ScienceOn
27 Evans, J. W.; Wainwright, M. S.; Cant, N. W.; Trimm, D. L. J. Catal. 1984, 88, 203.   DOI   ScienceOn
28 Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles Methodology and Applications; London: Academic Press, 1999; p 18.
29 Zhang, J.; Qian, Y. F.; Xu, G. R.; Qian, Z. P.; Chen, C.; Liu, Q. J. Phys. Chem. C 2010, 114, 10768.   DOI   ScienceOn
30 van der Grift, C. J. G.; Wielers, A. F. H.; Mulder, A.; Geus, J. W. Thermochim. Acta 1990, 171, 95-113.   DOI   ScienceOn
31 van der Grift, C. J. G.; Wielers, A. F. H.; Mulder, A.; Geus, J. W. Applied Catalysis 1990, 60, 181-192.   DOI   ScienceOn
32 Yuan, P.; Liu, Z. Y.; Sun, H. J.; Liu, S. C. Acta Phys. Chim. Sin, 2010, 26, 2235-2241.
33 Alvarez, R.; Toffolo, A.; Perez, V.; Linares, C. F. Catal. Lett. 2010, 137, 150.   DOI
34 Lee, J. S.; Kim, J. C.; Kim, Y. G. Appl. Catal. 1990, 57, 1.   DOI   ScienceOn
35 Gursahani, K. I.; Alcala, R.; Cortright, R. D.; Dumesic, J. A. Appl. Catal., A 2001, 222, 369.   DOI   ScienceOn
36 Raich, B. A.; Foley, H. C. Ind. Eng. Chem. Res. 1998, 37, 3888.   DOI   ScienceOn
37 Iwasa, N.; Yamamoto, O.; Tamura, R.; Nishikubo, M.; Takezawa, N. Catal. Lett. 1999, 62, 179.   DOI
38 Natal-Santiago, M. A.; Hill, J. M.; Dumesic, J. A. J. Mol. Catal. A: Chem. 1999, 140, 199.   DOI   ScienceOn