• Title/Summary/Keyword: n+-ring

Search Result 1,270, Processing Time 0.023 seconds

EXTENSIONS OF GENERALIZED STABLE RINGS

  • Wanru, Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1091-1097
    • /
    • 2009
  • In this paper, we investigate the extensions of generalized stable rings. It is shown that a ring R is a generalized stable ring if and only if R has a complete orthogonal set {e$_1$, . . . , e$_n$} of idempotents such that e$_1$Re$_1$, . . . , e$_n$Re$_n$ are generalized stable rings. Also, we prove that a ring R is a generalized stable ring if and only if R[[X]] is a generalized stable ring if and only if T(R,M) is a generalized stable ring.

N-PURE IDEALS AND MID RINGS

  • Aghajani, Mohsen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1237-1246
    • /
    • 2022
  • In this paper, we introduce the concept of N-pure ideal as a generalization of pure ideal. Using this concept, a new and interesting type of rings is presented, we call it a mid ring. Also, we provide new characterizations for von Neumann regular and zero-dimensional rings. Moreover, some results about mp-ring are given. Finally, a characterization for mid rings is provided. Then it is shown that the class of mid rings is strictly between the class of reduced mp-rings (p.f. rings) and the class of mp-rings.

On n-Amitsur Rings

  • Ochirbat, Baatar;Mendes, Deolinda I.C.;Tumurbat, Sodnomkhorloo
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.711-721
    • /
    • 2020
  • The concepts of an Amitsur ring and a hereditary Amitsur ring, which were introduced and studied by S. Tumurbat in a recent paper, are generalized. For a positive integer n, a ring A is said to be an n-Amitsur ring if γ(A[Xn]) = (γ(A[Xn]) ∩ A)[Xn] for all radicals γ, where A[Xn] is the polynomial ring over A in n commuting indeterminates. If a ring A satisfies the above equation for all hereditary radicals γ, then A is said to be a hereditary n-Amitsur ring. Characterizations and examples of these rings are provided. Moreover, new radicals associated with n-Amitsur rings are introduced and studied. One of these is a special radical and its semisimple class is polynomially extensible.

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

Structure and Dynamics of Dilute Two-Dimensional Ring Polymer Solutions

  • Oh, Young-Hoon;Cho, Hyun-Woo;Kim, Jeong-Min;Park, Chang-Hyun;Sung, Bong-June
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.975-979
    • /
    • 2012
  • Structure and Dynamics of dilute two-dimensional (2D) ring polymer solutions are investigated by using discontinuous molecular dynamics simulations. A ring polymer and solvent molecules are modeled as a tangent-hard disc chain and hard discs, respectively. Some of solvent molecules are confined inside the 2D ring polymer unlike in 2D linear polymer solutions or three-dimensional polymer solutions. The structure and the dynamics of the 2D ring polymers change significantly with the number ($N_{in}$) of such solvent molecules inside the 2D ring polymers. The mean-squared radius of gyration ($R^2$) increases with $N_{in}$ and scales as $R{\sim}N^{\nu}$ with the scaling exponent $\nu$ that depends on $N_{in}$. When $N_{in}$ is large enough, ${\nu}{\approx}1$, which is consistent with experiments. Meanwhile, for a small $N_{in}{\approx}0.66$ and the 2D ring polymers show unexpected structure. The diffusion coefficient (D) and the rotational relaxation time ($\tau_{rot}$) are also sensitive to $N_{in}$: D decreases and $\tau$ increases sharply with $N_{in}$. D of 2D ring polymers shows a strong size-dependency, i.e., D ~ ln(L), where L is the simulation cell dimension. But the rotational diffusion and its relaxation time ($\tau_{rot}$) are not-size dependent. More interestingly, the scaling behavior of $\tau_{rot}$ also changes with $N_{in}$; for a large $N_{in}$ $\tau_{rot}{\sim}N^{2.46}$ but for a small $N_{in}$ $\tau_{rot}{\sim}N^{1.43}$.

ON PRIME AND SEMIPRIME RINGS WITH SYMMETRIC n-DERIVATIONS

  • Park, Kyoo-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.451-458
    • /
    • 2009
  • Let $n{\geq}2$ be a fixed positive integer and let R be a noncommutative n!-torsion free semiprime ring. Suppose that there exists a symmetric n-derivation $\Delta$ : $R^{n}{\rightarrow}R$ such that the trace of $\Delta$ is centralizing on R. Then the trace is commuting on R. If R is a n!-torsion free prime ring and $\Delta{\neq}0$ under the same condition. Then R is commutative.

  • PDF

THE GENERAL LINEAR GROUP OVER A RING

  • Han, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.619-626
    • /
    • 2006
  • Let m be any positive integer, R be a ring with identity, $M_m(R)$ be the matrix ring of all m by m matrices eve. R and $G_m(R)$ be the multiplicative group of all n by n nonsingular matrices in $M_m(R)$. In this pape., the following are investigated: (1) for any pairwise coprime ideals ${I_1,\;I_2,\;...,\;I_n}$ in a ring R, $M_m(R/(I_1{\cap}I_2{\cap}...{\cap}I_n))$ is isomorphic to $M_m(R/I_1){\times}M_m(R/I_2){\times}...{\times}M_m(R/I_n);$ and $G_m(R/I_1){\cap}I_2{\cap}...{\cap}I_n))$ is isomorphic to $G_m(R/I_1){\times}G_m(R/I_2){\times}...{\times}G_m(R/I_n);$ (2) In particular, if R is a finite ring with identity, then the order of $G_m(R)$ can be computed.

Some Extensions of Rings with Noetherian Spectrum

  • Park, Min Ji;Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.487-494
    • /
    • 2021
  • In this paper, we study rings with Noetherian spectrum, rings with locally Noetherian spectrum and rings with t-locally Noetherian spectrum in terms of the polynomial ring, the Serre's conjecture ring, the Nagata ring and the t-Nagata ring. In fact, we show that a commutative ring R with identity has Noetherian spectrum if and only if the Serre's conjecture ring R[X]U has Noetherian spectrum, if and only if the Nagata ring R[X]N has Noetherian spectrum. We also prove that an integral domain D has locally Noetherian spectrum if and only if the Nagata ring D[X]N has locally Noetherian spectrum. Finally, we show that an integral domain D has t-locally Noetherian spectrum if and only if the polynomial ring D[X] has t-locally Noetherian spectrum, if and only if the t-Nagata ring $D[X]_{N_v}$ has (t-)locally Noetherian spectrum.

Study on New LIGBT with Multi Gate for High Speed and Improving Latch up Effect (래치 업 특성의 개선과 고속 스위칭 특성을 위한 다중 게이트 구조의 새로운 LIGBT)

  • 강이구;성만영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.371-375
    • /
    • 2000
  • In this paper a new conductivity modulated power transistor called the Lateral Insulated Gated Bipolar Transistor which included n+ ring and p-channel gate is presented. A new lateral IGBT structure is proposed to suppress latch-up and to improve turn off time by imploying n+ ring and p-channel gate and verified by MEDICI. The simulated I-V characteristics at $V_{G}$=15V show that the latch up occurs at $V_{A}$=18V and 6.9$\times$10$^{-5}$ A/${\mu}{\textrm}{m}$ for the proposed LIGBT while the conventional LIGBT latches at $V_{A}$=1.3V and 1.96${\mu}{\textrm}{m}$10$^{-5A}$${\mu}{\textrm}{m}$. It is shown that turn off characteristic of new LIGBT is 8 times than that of conventional LIGBT. And noble LIGBT is not n+ buffer layer because that It includes p channel gate and n+ ring. Therefore Mask for the buffer layer isn’t needed. The concentration of n+ ring is and the numbers of n+ ring and p channel gate are three for the optimal design.n.n.n.n.

  • PDF