EXTENSIONS OF GENERALIZED STABLE RINGS

ZHANG WANRU

ABSTRACT. In this paper, we investigate the extensions of generalized stable rings. It is shown that a ring R is a generalized stable ring if and only if R has a complete orthogonal set $\{e_1, \ldots, e_n\}$ of idempotents such that e_1Re_1, \ldots, e_nRe_n are generalized stable rings. Also, we prove that a ring R is a generalized stable ring if and only if R[[X]] is a generalized stable ring if and only if T(R, M) is a generalized stable ring.

1. Introduction

Let R be an associative ring with identity. A ring R is said to have stable range one provided that aR + bR = R with $a, b \in R$ implies that there exists $y \in R$ such that $a + by \in U(R)$, where U(R) is the set of all units in R. This definition is left-right symmetric. Moreover, we know that a right R-module Mcan be cancelled from direct sums if and only if $End_R(M)$ has stable range one. Many authors have studied stable range one conditions and its generalizations from different viewpoints such as [1, 3–12, 14].

As a generalization of rings with stable range one, in [9], Chen introduced the generalized stable rings. A ring R is called a generalized stable ring provided that aR + bR = R with $a, b \in R$ implies that there exists $y \in R$ such that $a + by \in K(R)$, where $K(R) = \{x \in R \mid \text{there exist } s, t \in R \text{ such that } sxt = 1\}$. Obviously, if a ring R has stable range one, then it is a generalized stable ring, but the converse is not true, see [9, Example 3]. Thus generalized stable rings are nontrivial generalizations of rings with stable range one. For more details and examples of generalized stable rings, see [5, 6, 9].

In this paper, we investigate the extensions of generalized stable rings. It is shown that a ring R is a generalized stable ring if and only if R has a complete orthogonal set $\{e_1, \ldots, e_n\}$ of idempotents such that e_1Re_1, \ldots, e_nRe_n are generalized stable rings. Also, we prove that a ring R is a generalized stable ring if and only if R[[X]] is a generalized stable ring if and only if T(R, M) is a generalized stable ring.

O2009 The Korean Mathematical Society

Received September 3, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 16E50, 16U99.

 $Key\ words\ and\ phrases.$ generalized stable rings, complete orthogonal set of idempotents, ring extensions.

ZHANG WANRU

2. Main results

The following result appeared in [9, Theorem 9].

Lemma 2.1. Let A be a right R-module, $E = \text{End}_R(A)$ be its endomorphism ring. Then the following are equivalent:

- (1) E is a generalized stable ring.
- (2) Given any decompositions $M = A_1 \oplus B_1 = A_2 \oplus B_2$ with $A_1 \cong A \cong A_2$, there exist $C, D, E \leq M$ such that $M = C \oplus D \oplus B_1 = C \oplus E \oplus B_2$ with $C \cong A$.

Lemma 2.2. Let M_1, M_2, \ldots, M_n be right *R*-modules. If $\operatorname{End}_R(M_1), \operatorname{End}_R(M_2), \ldots$, $\operatorname{End}_R(M_n)$ are generalized stable rings, then so is $\operatorname{End}_R(M_1 \oplus M_2 \oplus \cdots \oplus M_n)$.

Proof. Given right R-module decompositions $M = A_1 \oplus B = A_2 \oplus C$ with $A_1 \cong M_1 \oplus M_2 \oplus \cdots \oplus M_n \cong A_2$, then we have $A_1 = A_{11} \oplus A_{12} \oplus \cdots \oplus A_{1n}$ and $A_2 = A_{21} \oplus A_{22} \oplus \cdots \oplus A_{2n}$ with $A_{1i} \cong M_i \cong A_{2i}$ for $1 \le i \le n$. So $M = A_{11} \oplus A_{12} \oplus \cdots \oplus A_{1n} \oplus B = A_{21} \oplus A_{22} \oplus \cdots \oplus A_{2n} \oplus C$. Since $\operatorname{End}_R(M_1)$ is a generalized stable ring and $A_{11} \cong M_1 \cong A_{21}$, by Lemma 2.1, we can find submodules $C_1, D_1, E_1 \le M$ such that $M = C_1 \oplus D_1 \oplus A_{12} \oplus \cdots \oplus A_{1n} \oplus B = C_1 \oplus E_1 \oplus A_{22} \oplus \cdots \oplus A_{2n} \oplus C$ with $C_1 \cong M_1$. Likewise, we have submodules $C_2, \ldots, C_n, D_2, \ldots, D_n, E_2, \ldots, E_n$ such that $M = C_1 \oplus \cdots \oplus C_n \oplus D_1 \oplus \cdots \oplus D_n \oplus B = C_1 \oplus \cdots \oplus C_n \oplus E_1 \oplus \cdots \oplus E_n \oplus C$ with $C_i \cong M_i$ for $1 \le i \le n$. Clearly, $C_1 \oplus \cdots \oplus C_n \cong M_1 \oplus \cdots \oplus M_n$. By Lemma 2.1, we conclude that $\operatorname{End}_R(M_1 \oplus M_2 \oplus \cdots \oplus M_n)$ is a generalized stable ring.

A finite orthogonal set of idempotents e_1, \ldots, e_n in a ring R is said to be complete in case $e_1 + \cdots + e_n = 1 \in R$.

Theorem 2.3. The following conditions are equivalent:

- (1) R is a generalized stable ring.
- (2) There exists a complete orthogonal set $\{e_1, \ldots, e_n\}$ of idempotents such that e_1Re_1, \ldots, e_nRe_n are generalized stable rings.

Proof. $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (1)$ It follows by $e_i Re_i \cong \operatorname{End}_R(e_i R)$ and Lemma 2.2 that $\operatorname{End}_R(e_1 R \oplus \cdots \oplus e_n R)$ is a generalized stable ring. One easily checks that $R = e_1 R \oplus \cdots \oplus e_n R$. Hence $R \cong \operatorname{End}_R(R) = \operatorname{End}_R(e_1 R \oplus \cdots \oplus e_n R)$ is a generalized stable ring. \Box

Let e_1, \ldots, e_n be idempotents of a ring R. Clearly, with the usual matrix op-

 $\begin{array}{ccc} \text{eration,} \begin{pmatrix} e_1 R e_1 & \cdots & e_1 R e_n \\ \vdots & \ddots & \vdots \\ e_n R e_1 & \cdots & e_n R e_n \end{pmatrix} = \left\{ \begin{pmatrix} e_1 r_{11} e_1 & \cdots & e_1 r_{1n} e_n \\ \vdots & \ddots & \vdots \\ e_n r_{n1} e_1 & \cdots & e_n r_{nn} e_n \end{pmatrix} \middle| r_{ij} \in R(1 \le i, j \le n) \right\}$ forms a ring with the identity diag (e_1, \dots, e_n) .

Proposition 2.4. Let e_1, \ldots, e_n be idempotents of a ring R. If e_1Re_1, \ldots, e_nRe_n are all generalized stable rings, then so is the ring

$$\begin{pmatrix} e_1 R e_1 & \cdots & e_1 R e_n \\ \vdots & \ddots & \vdots \\ e_n R e_1 & \cdots & e_n R e_n \end{pmatrix}$$

Proof. Set

$$T = \begin{pmatrix} e_1 R e_1 & \cdots & e_1 R e_n \\ \vdots & \ddots & \vdots \\ e_n R e_1 & \cdots & e_n R e_n \end{pmatrix}.$$

Choose $f_1 = \text{diag}(e_1, 0, \dots, 0), f_2 = \text{diag}(0, e_2, \dots, 0), \dots, f_n = \text{diag}(0, 0, \dots, e_n) \in T$. Then we have a complete orthogonal set $\{f_1, f_2, \dots, f_n\}$ of idempotents such that $f_i T f_i \cong e_i R e_i$ are generalized stable rings. By Theorem 2.3, T is a generalized stable ring.

Let $M_n(R)$ denotes the *n* by *n* matrix ring over *R*, from Proposition 2.4, we have the following result in [9].

Corollary 2.5. If R is a generalized stable ring, then so is $M_n(R)$ for all positive integer n.

A Morita context denoted by (A, B, M, N, ψ, ϕ) consists of two rings A, B, two bimodules ${}_{A}N_{B}$, ${}_{B}M_{A}$ and a pair of bimodule homomorphisms (called pairings) $\psi : N \otimes_{B} M \to A$ and $\phi : M \otimes_{A} N \to B$ which satisfy the following associativity: $\psi(n \otimes m)n' = n\phi(m \otimes n')$, $\phi(m \otimes n)m' = m\psi(n \otimes m')$ for any $m, m' \in M, n, n' \in N$. These conditions ensure that the set T of generalized matrices $\begin{pmatrix} a & n \\ m & b \end{pmatrix}$, $a \in A, b \in B, m \in M, n \in N$ forms a ring, called the ring of the Morita context. Particularly, if N = 0, then the Morita context is the formal triangular matrix ring.

Corollary 2.6. Let T be the ring of a Morita context (A, B, M, N, ψ, ϕ) . If A and B are generalized stable rings, then so is T.

Proof. Set $e_1 = \begin{pmatrix} 1_A & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1_B \end{pmatrix}$. Then $\{e_1, e_2\}$ is a complete orthogonal set of idempotents such that $e_1Te_1 \cong A$, $e_2Te_2 \cong B$ are generalized stable rings. Then we obtain the result by Theorem 2.3.

Corollary 2.7. Let $T = \begin{pmatrix} A & 0 \\ M & B \end{pmatrix}$ be the formal triangular matrix ring. If A and B are generalized stable rings, then so is T.

Theorem 2.8. Let e_1, \ldots, e_n be idempotents of a ring R. If e_1Re_1, \ldots, e_nRe_n are all generalized stable rings, then so is the ring

$e_1 R e_1$	0	• • •	0)	
$e_2 R e_1$	$e_2 R e_2$	•••	0	
:	:	·	:	•
$e_n Re_1$	$e_n R e_2$		$e_n R e_n$	

Proof. Clearly, the result holds for n = 1. Assume now that the result holds for $n = k \ge 1$. Let n = k + 1. Set

$$B = \begin{pmatrix} e_2 R e_2 & 0 & \cdots & 0 \\ e_3 R e_2 & e_3 R e_3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ e_{k+1} R e_2 & e_{k+1} R e_3 & \cdots & e_{k+1} R e_{k+1} \end{pmatrix}, \quad M = \begin{pmatrix} e_2 R e_1 \\ e_3 R e_1 \\ \vdots \\ e_{k+1} R e_1 \end{pmatrix}$$

Then $T = \begin{pmatrix} e_1 R e_1 & 0 \\ M & B \end{pmatrix}$. By hypothesis, B is a generalized stable ring. Let $f_1 = \text{diag}(e_1, 0), f_2 = \text{diag}(0, \text{diag}(e_2, \dots, e_{k+1}))$. Then $\{f_1, f_2\}$ is a complete orthogonal set of idempotents such that $f_1 T f_1 \cong e_1 R e_1, f_2 T f_2 \cong B$ are generalized stable rings. Then we obtain the result by Theorem 2.3.

Corollary 2.9. If R is a generalized stable ring, then so is the ring of $n \times n$ lower triangular matrices over R.

Analogously, we deduce that if R is a generalized stable ring, then so is the ring of $n \times n$ upper triangular matrices over R.

In [9, Proposition 5], the author proved that a ring R is a generalized stable ring if and only if R/J(R) is a generalized stable ring. Use the same method in [9, Proposition 5], we can prove the following result. We omit its proofs.

Lemma 2.10. Let R be a ring, I an ideal of R such that $I \subseteq J(R)$. The following conditions are equivalent:

(1) R is a generalized stable ring.

(2) R/I is a generalized stable ring.

Let R[[X]] denotes the power series ring over R. From Lemma 2.10, we have the following result.

Theorem 2.11. A ring R is a generalized stable ring if and only if R[[X]] is a generalized stable ring.

Proof. We construct a map $\phi : R[[X]] \to R$ such that $\phi(\sum_{i=0}^{\infty} a_i x^i) \to a_0$ for any $\sum_{i=0}^{\infty} a_i x^i \in R[[X]]$. It is easy to verify that $\operatorname{Ker} \phi = \{\sum_{i=0}^{\infty} a_i x^i | a_0 = 0\}$. Since for any $\sum_{i=0}^{\infty} a_i x^i \in \operatorname{Ker} \phi$ and $y \in R[[X]], 1 - y(\sum_{i=0}^{\infty} a_i x^i) = 1 + c_1 x + c_2 x^2 + \cdots$, so $1 - y(\sum_{i=0}^{\infty} a_i x^i) \in U(R[[X]])$. Hence, we have $\sum_{i=0}^{\infty} a_i x^i \in J(R[[X]])$, so $\operatorname{Ker} \phi \subseteq J(R[[X]])$. Since $R \cong R[[X]]/\operatorname{Ker} \phi$, we obtain the result by Lemma 2.10.

Given a ring R and a bimodule ${}_{R}M_{R}$, the trivial extension of R by M is the ring $T(R, M) = R \oplus M$ with the usual addition and the following multiplication:

$$(a_1, x_1)(a_2, x_2) = (a_1a_2, a_1x_2 + x_1a_2).$$

This is isomorphic to the ring of all matrices $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$, where $r \in R$ and $m \in M$ and the usual matrix operations are used.

Theorem 2.12. A ring R is a generalized stable ring if and only if T(R, M) is a generalized stable ring.

Proof. From [13], we have J(T(R, M)) = T(J(R), M). We construct a map $\phi: R \longrightarrow T(R, M)/J(T(R, M))$ such that $\phi(x) = \overline{(x, 0)}$ for any $x \in R$. Suppose that $\overline{(x, m)} \in T(R, M)/J(T(R, M))$, then $\overline{(x, m)} = \overline{(x, 0)} + \overline{(0, m)} = \phi(x)$. Hence ϕ is a epimorphism and Ker $\phi = \{x \in R | (x, m) \in J(T(R, M))\} = J(R)$. So $T(R, M)/J(T(R, M)) \cong R/J(R)$. So we complete the proof by Lemma 2.10.

Now we consider the following subring of the triangular matrix ring. Let ${\cal R}$ be a ring and let

$$R_n = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \middle| a, a_{ij} \in R \right\}$$

be a subset of the triangular matrix ring. Then R_n is a ring with addition point-wise and usual matrix multiplication.

Proposition 2.13. A ring R is a generalized stable ring if and only if R_n is a generalized stable ring.

Proof. It is clear that

$$J(R_n) = \left\{ \begin{pmatrix} a & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \middle| a \in J(R), a_{ij} \in R \right\}.$$

Since $R_n/J(R_n) \cong R/J(R)$, we obtain the result by Lemma 2.10.

Let R be a ring and let

$$T_n(R) = \left\{ \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ 0 & a_1 & a_2 & \cdots & a_{n-1} \\ 0 & 0 & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_1 \end{pmatrix} \middle| a_i \in R(1 \le i \le n) \right\}$$

be a subset of the triangular matrix ring. Then $T_n(R)$ is a ring with addition point-wise and usual matrix multiplication.

Proposition 2.14. A ring R is a generalized stable ring if and only if $T_n(R)$ is a generalized stable ring.

Proof. It is clear that

$$J(T_n(R)) = \left\{ \begin{pmatrix} a & a_2 & a_3 & \cdots & a_n \\ 0 & a & a_2 & \cdots & a_{n-1} \\ 0 & 0 & a & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a \end{pmatrix} \middle| a \in J(R), a_i \in R(2 \le i \le n) \right\}.$$

Since $T_n(R)/J(T_n(R)) \cong R/J(R)$, we obtain the result by Lemma 2.10.

Corollary 2.15. Let R be a ring and n any positive integer. Then R is a generalized stable ring if and only if $R[x]/(x^n)$ is a generalized stable ring, where (x^n) is the ideal generated by x^n .

Proof. Observe that $T_n(R) \cong R[x]/(x^n)$ for any positive integer n. Thus the result follows from Proposition 2.14.

Recall from [2], an idempotent $e \in R$ is left (resp. right) semicentral in R if ere = re (resp. ere = er) for all $r \in R$. It is well known that if a ring R has (weakly) stable range one, then eRe has (weakly) stable range one for any $e^2 = e \in R$. But we don't know the result whether or not true for generalized stable rings. For semicentral idempotents, we have the following result.

Theorem 2.16. Let R be a generalized stable ring. Then eRe is also a generalized stable ring for any left (right) semicentral idempotent $e \in R$.

Proof. Given ax + b = e with $a, x, b \in eRe$, then we have (a + 1 - e)(x + 1 - e) + b = 1. Since R is a generalized stable ring, there exists $z \in R$ such that $a + 1 - e + bz = u \in K(R)$. Assume sut = 1 for some $s, t \in R$, that is, s(a+1-e+bz)t = 1, thus es(a+1-e+bz)t = e. Since e is a left semicentral idempotent, we have (1 - e)te = 0, hence es(a + bz)te = e. In addition, we know that $a, b \in eRe$, thus ese(a+b(eze))ete = e, that is, $a+b(eze) \in K(eRe)$, as desired.

Similarly, we can prove eRe is also a generalized stable ring for any right semicentral idempotent $e \in R$.

References

- P. Ara, G. K. Pedersen, and F. Perera, An infinite analogue of rings with stable rank one, J. Algebra 230 (2000), no. 2, 608–655.
- [2] G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), no. 1, 25–42.
- [3] H. Y. Chen, Full elements in one-sided unit-regular rings, Comm. Algebra 33 (2005), no. 11, 4115–4123.
- [4] _____, Full elements in regular rings, Taiwanese J. Math. 8 (2004), no. 2, 203–209.
- [5] _____, Generalized stable exchange rings, Algebra Colloq. 15 (2008), no. 2, 193–198.
- [6] _____, Generalized stable regular rings, Comm. Algebra 31 (2003), no. 10, 4899–4910.
- [7] _____, On exchange QB_{∞} -rings, Algebra Colloq. 14 (2007), no. 4, 613–623.
- [8] _____, On exchange QB-rings, Comm. Algebra **31** (2003), no. 2, 831–841.

- [9] _____, On generalized stable rings, Comm. Algebra 28 (2000), no. 4, 1907–1917.
- [10] _____, On QB endomorphism rings, Comm. Algebra **35** (2007), no. 12, 4005–4017.
- [11] _____, On QB_{∞} -rings, Comm. Algebra **34** (2006), no. 6, 2057–2068.
- [12] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269–278.
- [13] W. K. Nicholosn, J. K. Park, and M. F. Yousif, Extensions of simple-injective rings, Comm. Algebra 28 (2000), no. 10, 4665–4675.
- [14] J. Q. Wei, Unit-regularity and stable range conditions, Comm. Algebra 33 (2005), no. 6, 1937–1946.

DEPARTMENT OF MATHEMATICS HEXI UNIVERSITY ZHANGYE, 734000, P. R. CHINA *E-mail address:* zhangwru@163.com