• Title/Summary/Keyword: mutant rice

Search Result 200, Processing Time 0.025 seconds

KRDD: Korean Rice Ds-tagging Lines Database for Rice (Oryza sativa L. Dongjin)

  • Kim, Chang-Kug;Lee, Myung-Chul;Ahn, Byung-Ohg;Yun, Doh-Won;Yoon, Ung-Han;Suh, Seok-Cheol;Eun, Moo-Young;Hahn, Jang-Ho
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.64-67
    • /
    • 2008
  • The Korean Rice Ds-tagging lines Database (KRDD) is designed to provide information about Ac/Ds insertion lines and activation tagging lines using japonica rice. This database has provided information on 18,158 Ds lines, which includes the ID, description, photo image, sequence information, and gene characteristics. The KRDD is visualized using a web-based graphical view, and anonymous users can query and browse the data using the search function. It has four major menus of web pages: (i) a Blast Search menu of a mutant line; Blast from rice Ds-tagging mutant lines; (ii) a primer design tool to identify genotypes of Ds insertion lines; (iii) a Phenotype menu for Ds lines, searching by identification name and phenotype characteristics; and (iv) a Management menu for Ds lines.

A Small GTPase RHO2 Plays an Important Role in Pre-infection Development in the Rice Blast Pathogen Magnaporthe oryzae

  • Fu, Teng;Kim, Joon-Oh;Han, Joon-Hee;Gumilang, Adiyantara;Lee, Yong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.470-479
    • /
    • 2018
  • The rice blast pathogen Magnaporthe oryzae is a global threat to rice production. Here we characterized RHO2 gene (MGG_02457) that belongs to the Rho GTPase family, using a deletion mutant. This mutant ${\Delta}Morho2$ exhibited no defects in conidiation and germination but developed only 6% of appressoria in response to a hydrophobic surface when compared to the wild-type progenitor. This result indicates that MoRHO2 plays a role in appressorium development. Furthermore, exogenous cAMP treatment on the mutant led to appressoria that exhibited abnormal morphology on both hydrophobic and hydrophilic surfaces. These outcomes suggested the involvement of MoRHO2 in cAMP-mediated appressorium development. ${\Delta}Morho2$ mutation also delayed the development of appressorium-like structures (ALS) at hyphal tips on hydrophobic surface, which were also abnormally shaped. These results suggested that MoRHO2 is involved in morphological development of appressoria and ALS from conidia and hyphae, respectively. As expected, ${\Delta}Morho2$ mutant was defective in plant penetration, but was still able to cause lesions, albeit at a reduced rate on wounded plants. These results implied that MoRHO2 plays a role in M. oryzae virulence as well.

Genetic Analysis on Floury Endosperm Characteristics of 'Namil(SA)-flo1', a Japonica Rice Mutant Line (남일벼 돌연변이 후대 계통 'Namil(SA)-flo1'의 분질배유 특성에 대한 유전분석)

  • Mo, Young-Jun;Jeung, Ji-Ung;Kang, Kyung-Ho;Lee, Jeom-Sig;Kim, Bo-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.283-291
    • /
    • 2013
  • Rice varieties with suitable flour-making quality are required to promote rice processed-food industry and boost rice consumption in Korea. 'Namil (SA)-flo1' is an advanced mutant line with floury endosperm which shows good flour-making quality under dry-milling process. Genetic analysis was carried out to localize the chromosomal region responsible for the floury endosperm of 'Namil (SA)- flo1'. By using 94 F2 progenies, which were derived from 'Namil (SA)-flo1' ${\times}$ 'Milyang 23', floury grains percentage was investigated as phenotypic data, and genotyping was conducted with 54 SSR markers. Association analysis showed that the target genetic region for floury endosperm is on middle-low region of chromosome 5. Through further association analysis with increased number of SSR markers on chromosome 5, we found that genotypic variation in RM164 explains 79.7% of the variation in floury grains percentage of F2:3 seeds. The floury endosperm locus was localized on 17.7-20.7 Mbp region of chromosome 5 and will be further analyzed for fine mapping and gene identification.

Isolation of Pigment Overproducing Mutant from Monascus purpureus and Optimization of Pigment Production (Monascus purpureus로부터 다량의 색소생성 변이주의 분리 및 색소생성의 최적조건)

  • Park Chi Duck;Jung Hyuck Jun;Yu Tae Shick
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.130-134
    • /
    • 2005
  • Isolation of a pigment overproducing mutant, P-57, by ultraviolet irradiation of Monascus purpureus KCCM 60016 and investigation of the optimal conditions for pigment production of the mutant were carried out. P-57 mutant produced pigment on solid state culture. Unpolished rice was the best cereal source for pigment production among eight kinds of tested cereal sources for the solid culture of the mutant. The optimal culture condition for pigment production were obtained from the cultivated at $30^{\circ}C,\;90\%$ humidity for 30 days. The P-57 mutant strain showed the best pigment productivity of 160.0 unit at red pigment, 193.6 unit at orange pigment, and 141.6 unit at yellow pigment on solid state culture under optimal condition.

Transgenic Rice Plants Expressing an Active Tobacco Mitogen-activated Protein Kinase Kinase Induce Multiple Defense Responses

  • Jeong, Jin-A;Yoo, Seung-Jin;Yang, Douck-Hee;Shin, Seo-Ho;Lee, Myung-Chul;Cho, Baik-Ho;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.375-383
    • /
    • 2008
  • It is well known that NtMEK2, a tobacco MAPK kinase, is the upstream kinase of both salicylic acid-induced protein kinase and wound-induced protein kinase. In addition, expression of $NtMEK2^{DD}$, a constitutively active mutant of NtMEK2, is known to induce multiple defense responses in tobacco. In this study, transgenic rice plants that contained an active or inactive mutant of NtMEK2 under the control of a steroid inducible promoter were generated and used to determine if a similar MAPK cascade is involved in disease resistance in rice. The expression of $NtMEK2^{DD}$ in transgenic rice plants resulted in HR-like cell death. The observed cell death was preceded by the activation of endogenous rice 48-kDa MBP kinase, which is also activated by Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice. In addition, prolonged activation of the MAPK induced the generation of hydrogen peroxide and up-regulated the expression of defense-related genes including the pathogenesis-related genes, peroxidases and glutathione S-transferases. These results demonstrate that NtMEK2 is functionally replaceable with rice MAPK kinase in inducing the activation of the downstream MAPK, which in turn induces multiple defense responses in rice.

The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae

  • Kim, Jieun;Mannaa, Mohamed;Kim, Namgyu;Lee, Chaeyeong;Kim, Juyun;Park, Jungwook;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.412-425
    • /
    • 2018
  • The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to $H_2O_2$, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to $H_2O_2$ induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.

Expression analysis and characterization of rice oligopeptide transport gene (OsOPT10) that contributes to salt stress tolerance

  • Jung, Yu-Jin;Lee, In-Hye;Han, Kyung-Hee;Son, Cho-Yee;Cho, Yong-Gu;Lee, Myung-Chul;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.483-493
    • /
    • 2010
  • Knock-out of a gene by insertional mutagenesis is a direct way to address its function through the mutant phenotype. Among ca. 15,000 gene-trapped Ds insertion lines of rice, we identified one line from selected sensitive lines in highly salt stress. We conducted gene tagging by TAIL-PCR, and DNA gel blot analysis from salt sensitive mutant. A gene encoding an oligopeptide transporter (OPT family) homologue was disrupted by the insertion of a Ds transposon into the OsOPT10 gene that was located shot arm of chromosome 8. The OsOPT10 gene (NP_001062118.) has 6 exons and encodes a protein (752 aa) containing the OPT family domain. RT-PCR analysis showed that the expression of OsOPT10 gene was rapidly and strongly induced by stresses such as high-salinity (250 mM), osmotic, drought, $100\;{\mu}M$ ABA. The subcellular localization assay indicated that OsOPT10 was localized specifically in the plasma membrane. Overexpression of OsOPT10 in Arabidopsis thaliana and rice conferred tolerance of transgenic plants to salt stress. Further we found expression levels of some stress related genes were inhibited in OsOPT10 transgenic plants. These results suggested that OsOPT10 might play crucial but differential roles in plant responses to various abiotic stresses.

Variation of Agronomic Traits of Rice Mutant Lines Induced by Sodium Azide

  • Shin, Young-Seop;Jeon, Yong-Hee;Kang, Kyung-Ho;Seo, Yong-Weon;Jeung, Ji-Ung
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.92-100
    • /
    • 2009
  • To investigate the mutagenecity of sodium azide (SA) and to select mutants having various agronomic characteristics in rice (Oryza sativa L. ssp. japonica), dry seeds of rice variety 'Suweon 472' were treated with 0, 0.5, 1.0, 2.0, and 4.0 mM SA solutions prepared in 0.1 M phosphate buffer (pH 3.0). Germination rate, seedling height and sterility were investigated in $M_1$ generation and chlorophyll mutations were observed in $M_3$ generation. Germination rate and seedling height decreased as the increase of SA concentration in $M_1$ generation, the maximum seed sterility (40.8%) was found at 4.0 mM SA concentration. Chlorophyll mutants were occurred in $M_3$ generation and the frequency calculated on a line basis was 13.5% at the same treatment. Many kinds of mutations for morphological and agronomic characters were observed and mutations with short culm and glabrous leaf were frequently found in $M_3$ generation. Interestingly, five mutant lines resistant to blast or bacterial blight (BB) were selected and evaluated with several isolates in $M_3$ generation although Suweon 472 has been known to be susceptible to blast and BB. These mutants showed all resistance to seven isolates of blast and a total of 76 lines among 2,567 lines evaluated showed resistant to race K1 of bacterial blight. Two mutant lines (440172 and 41272) showed different reaction to BB isolates from the other resistant mutants. A few kinds of endosperm mutants were also identified and most of them were waxy mutants.

A transcription factor "OsNAC075" is essential for salt resistance in rice (Oryza sativa L.)

  • Jung, Yu-Jin;Lee, Myung-Chul;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.94-104
    • /
    • 2011
  • Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, we systematically screened salt sensitive rice mutants by use of the Activator/Dissociation (Ac/Ds) transposon tagging system. In this study, we focused on the salt sensitive mutant line, designated SSM-1. A gene encoding a NAC transcription factor homologue was disrupted by the insertion of a Ds transposon into SSM-1 line. The OsNAC075 gene (EU541472) has 7 exons and encodes a protein (486-aa) containing the NAC domain in its N-terminal region. Sequence comparison showed that the OsNAC075 protein had a strikingly conserved region at the N-terminus, which is considered as the characteristic of the NAC protein family. OsNAC075 protein was orthologous to Arabidopsis thaliana ANAC075. Phylogenetic analysis confirmed OsNAC075 belonged to the OsNAC3 subfamily, which plays an important role in response to stress stimuli. RT-PCR analysis showed that the expression of OsNAC075 gene was rapidly and strongly induced by stresses such as NaCl, ABA and low temperature ($4^{\circ}C$). Our data suggest that OsNAC075 holds promising utility in improving salt tolerance in rice.

Identification of RAPD Markers Associated with Grain Weight in Rice

  • Lee, Hyung-Gyu;Kim, Kyung-Min;Sohn, Jae-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.261-265
    • /
    • 2001
  • This study was carried out to select randomly amplified polymorphic DNA (RAPD) markers associated with grain weight of a large-grain mutant, Hyacp 39-26-1, derived from anther culture of a rice cultivar, 'Hwayeongbyeo'. The segregation mode for grain weight in an F$_2$ population from a cross, 'Hwayeongbyeo/Hyacp 39-26-1', showed a nearly normal distribution. One hundred and ninety-one F$_2$plants ranged from 21.8 g to 34.7 g in 1,000-grain weight with a mean of 26.8 g. Five hundred and twenty primers were used to detect the RAPD markers associated with the grain weight of the large-grain mutant. Of these primers, 54 primers showed polymorphism between 'Hwayeongbyeo' and 'Hyacp 39-26-1'. Four RAPD markers (OPB18, OPH07, OPT20, and OPX20) were significantly related to the grain weight of twenty one F$_3$ lines derived from the cross, 'Hwayeongbyeo/Hyacp 39-26-1'. This RAPD marker could facilitate the early and efficient selection of high-yield lines through improvement of grain weight in rice.

  • PDF