DOI QR코드

DOI QR Code

Transgenic Rice Plants Expressing an Active Tobacco Mitogen-activated Protein Kinase Kinase Induce Multiple Defense Responses

  • Jeong, Jin-A (Agricultural Plant Stress Research Center, Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Yoo, Seung-Jin (Agricultural Plant Stress Research Center, Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Yang, Douck-Hee (Agricultural Plant Stress Research Center, Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Shin, Seo-Ho (Department of Rice and Winter Cereal Crop, National Institute of Crop Science, RDA) ;
  • Lee, Myung-Chul (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA) ;
  • Cho, Baik-Ho (Agricultural Plant Stress Research Center, Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Yang, Kwang-Yeol (Agricultural Plant Stress Research Center, Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University)
  • Published : 2008.12.01

Abstract

It is well known that NtMEK2, a tobacco MAPK kinase, is the upstream kinase of both salicylic acid-induced protein kinase and wound-induced protein kinase. In addition, expression of $NtMEK2^{DD}$, a constitutively active mutant of NtMEK2, is known to induce multiple defense responses in tobacco. In this study, transgenic rice plants that contained an active or inactive mutant of NtMEK2 under the control of a steroid inducible promoter were generated and used to determine if a similar MAPK cascade is involved in disease resistance in rice. The expression of $NtMEK2^{DD}$ in transgenic rice plants resulted in HR-like cell death. The observed cell death was preceded by the activation of endogenous rice 48-kDa MBP kinase, which is also activated by Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice. In addition, prolonged activation of the MAPK induced the generation of hydrogen peroxide and up-regulated the expression of defense-related genes including the pathogenesis-related genes, peroxidases and glutathione S-transferases. These results demonstrate that NtMEK2 is functionally replaceable with rice MAPK kinase in inducing the activation of the downstream MAPK, which in turn induces multiple defense responses in rice.

Keywords

References

  1. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chi, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M. and Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-983 https://doi.org/10.1038/415977a
  2. Ehlting, J., Provart, N. J. and Werck-Reichhart, D. 2006. Functional annotation of the Arabidopsis P450 superfamily based on large-scale co-expression analysis. Biochem. Soc. Trans. 34:1192-1198 https://doi.org/10.1042/BST0341192
  3. Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  4. Hwang, I. T., Kim, Y. J., Kim, S. H., Kwak, C. I., Gu, Y. Y. and Chun, J. Y. 2003. Annealing control primer system for improving specificity of PCR amplification. BioTechniques 35:1180-1184
  5. Jin, H., Liu, Y., Yang, K. Y., Kim, C. Y., Baker, B. and Zhang, S. 2003. Function of a mitogen-activated protein kinase pathway in N gene-mediated resistance in tobacco. Plant J. 33:719-731 https://doi.org/10.1046/j.1365-313X.2003.01664.x
  6. Jonak, C., Okresz, L., Bogre, L. and Hirt, H. 2002. Complexity, cross talk and integration of plant MAP kinase signaling. Curr. Opin. Plant Biol. 5:415-424 https://doi.org/10.1016/S1369-5266(02)00285-6
  7. Kachroo, A., He, Z., Patkar, R., Zhu, Q., Zhong, J., Li, D., Ronald, P., Lamb, C. and Chattoo, B. B. 2003. Induction of $H_2O_2$ in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res. 12:577-586 https://doi.org/10.1023/A:1025896513472
  8. Katou, S., Yamamoto, A., Yoshioka, H., Kawakita, K. and Doke, N. 2003. Functional analysis of potato mitogen-activated protein kinase kinase, StMEK1. J. Gen. Plant Pathol. 69:161-168
  9. Kauffman, H. E., Reddy, A. P. K., Hsieh, S. P. Y. and Merca, S. D. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae (bacterial blight). Plant Dis. Rep. 57:537-541
  10. Kim, C. Y. and Zhang, S. 2004. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J. 38:142-151 https://doi.org/10.1111/j.1365-313X.2004.02033.x
  11. Kim, S., Ahn, I. P., Park, C. H., Park, S. G., Park, S. Y., Jwa, N. S. and Lee, Y. H. 2001. Molecular characterization of the cDNA encoding an acidic isoform of PR-1 protein in rice. Mol. Cells 11:115-121
  12. Kim, Y. J., Kwak, C. I., Gu, Y. Y., Hwang, I. T. and Chun, J. Y. 2004. Annealing control primer system for identification of differentially expressed genes on agarose gels. BioTechniques 36:424-434
  13. Kottapalli, K. R., Rakwal, R., Satoh, K., Shibato, J., Kottapalli, P., Iwahashi, H. and Kikuchi, S. 2007. Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv. oryzae. Plant Physiol. Biochem. 45:834-850 https://doi.org/10.1016/j.plaphy.2007.07.013
  14. Lee, K., Jeon, H. and Kim, M. 2002. Optimization of a mature embryo-based in vitro culture system for high-frequency somatic embryogenic callus induction and plant regeneration from japonica rice cultivars. Plant Cell, Tiss. Org. Cult. 71:237-244 https://doi.org/10.1023/A:1020305432315
  15. Lee, M. O., Cho, K., Kim, S. H., Jeong, S. H., Kim, J. A., Jung, Y. H., Shim, J., Shibato, J., Rakwal, R., Tamogami, S., Kubo, A., Agrawal, G. K. and Jwa, N. S. 2008. Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. Planta 227:981-990 https://doi.org/10.1007/s00425-007-0672-2
  16. Li, L., Cheng, H., Gai, J. and Yu, D. 2007. Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula. Planta 226:109-123 https://doi.org/10.1007/s00425-006-0473-z
  17. Lieberherr, D., Thao, N. P., Nakashima, A., Umemura, K., Kawasaki, T. and Shimamoto, K. 2005. A sphingolipid elicitor- inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimetric G-protein in rice. Plant Physiol. 138:1644-1652 https://doi.org/10.1104/pp.104.057414
  18. Liu, Y., Jin, H., Yang, K. Y., Kim, C. Y., Baker, B. and Zhang, S. 2003. Interaction between two mitogen-activated protein kinases during tobacco defense signaling. Plant J. 34:149-160 https://doi.org/10.1046/j.1365-313X.2003.01709.x
  19. Liu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W. and Zhang, S. 2007. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 51:941-954 https://doi.org/10.1111/j.1365-313X.2007.03191.x
  20. Ichimura, K., Shinozaki, K., Tena, G., Sheen, J., Henny, Y., Champion, A., Kreis, M., Zhang, S. and Hirt, H. 2002. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7:301-308 https://doi.org/10.1016/S1360-1385(02)02302-6
  21. Mishra, N. S., Tuteja, R. and Tuteja, N. 2006. Signaling through MAP kinase networks in plants. Arch. Biochem Biophys. 452:55-68 https://doi.org/10.1016/j.abb.2006.05.001
  22. Ouwerkerk, P. B. F., De Kam, R. J., Hoge, J. H. C. and Meijer, A. H. 2001. Glucocorticoid-inducible gene expression in rice. Planta 213:370-378 https://doi.org/10.1007/s004250100583
  23. Ralston, L., Kwon, S. T., Schoenbeck, M., Ralston, J., Schenk, D. J., Coates, R. M. and Chappell, J. 2001. Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene- 1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch. Biochem. Biophys. 393:222-235 https://doi.org/10.1006/abbi.2001.2483
  24. Ren, D., Yang, H. and Zhang, S. 2002. Cell Death Mediated by MAPK Is Associated with Hydrogen Peroxide Production in Arabidopsis. J. Biol. Chem. 277:559-565 https://doi.org/10.1074/jbc.M109495200
  25. Ren, D., Liu, Y., Yang, K. Y., Han, L., Mao, G., Glazebrook, J. and Zhang, S. 2008. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 105:5638-5643 https://doi.org/10.1073/pnas.0711301105
  26. Rohila, J. S. and Yang, Y. 2007. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J. Integrative Plant Biol. 49:751-759 https://doi.org/10.1111/j.1744-7909.2007.00501.x
  27. Thordal-Christensen, H., Zhang, Z., Wei, Y. and Collinge, D. B. 1997. Subcellular localization of $H_2O_2$ in plants. $H_2O_2$ accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194 https://doi.org/10.1046/j.1365-313X.1997.11061187.x
  28. Widmann, C., Gibson, S., Jarpe, M. B. and Johnson, G. L. 1999. Mitogen-activated protein kinase: conservation of a threekinase module from yeast to human. Physiol. Rev. 79:143-180 https://doi.org/10.1152/physrev.1999.79.1.143
  29. Xu, W., Bak, S., Decker, A., Paquette, S. M., Feyereisen, R. and Galbraith, D. W. 2001. Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272:61-74 https://doi.org/10.1016/S0378-1119(01)00516-9
  30. Yamamizo, C., Kuchimura, K., Kobayashi, A., Katou, S., Kawakita, K., Jones, J. D., Doke, N. and Yoshioka, H. 2006. Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol. 140:681-692 https://doi.org/10.1104/pp.105.074906
  31. Yang, K. Y., Liu, Y. and Zhang, S. 2001. Activation of a mitogenactivated protein kinase pathway is involved in disease resistance in tobacco. Proc. Natl. Acad. Sci. USA 98:741-746 https://doi.org/10.1073/pnas.98.2.741
  32. Zhang, S. and Klessig, D. F. 1998. Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc. Natl. Acad. Sci. USA 95:7433-7438 https://doi.org/10.1073/pnas.95.13.7433
  33. Zhang, S. and Klessig, D. F. 2001. MAPK cascades in plant defense signaling. Trends Plant Sci. 6:520-527 https://doi.org/10.1016/S1360-1385(01)02103-3
  34. Zhang, S. and Liu, Y. 2001. Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13:1877-1889 https://doi.org/10.1105/tpc.13.8.1877

Cited by

  1. Involvement of the OsMKK4-OsMPK1 Cascade and its Downstream Transcription Factor OsWRKY53 in the Wounding Response in Rice vol.30, pp.2, 2014, https://doi.org/10.5423/PPJ.OA.10.2013.0106