• Title/Summary/Keyword: multivariate statistical methods

Search Result 463, Processing Time 0.019 seconds

Nonparametric two sample tests for scale parameters of multivariate distributions

  • Chavan, Atul R;Shirke, Digambar T
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.397-412
    • /
    • 2020
  • In this paper, a notion of data depth is used to propose nonparametric multivariate two sample tests for difference between scale parameters. Data depth can be used to measure the centrality or outlying-ness of the multivariate data point relative to data cloud. A difference in the scale parameters indicates the difference in the depth values of a multivariate data point. By observing this fact on a depth vs depth plot (DD-plot), we propose nonparametric multivariate two sample tests for scale parameters of multivariate distributions. The p-values of these proposed tests are obtained by using Fisher's permutation approach. The power performance of these proposed tests has been reported for few symmetric and skewed multivariate distributions with the existing tests. Illustration with real-life data is also provided.

Detecting Influential Observations in Multivariate Statistical Analysis of Incomplete Data by PCA (주성분분석에 의한 결손 자료의 영향값 검출에 대한 연구)

  • 김현정;문승호;신재경
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.383-392
    • /
    • 2000
  • Since late 1970, methods of influence or sensitivity analysis for detecting influential observations have been studied not only in regression and related methods but also in various multivariate methods. If results of multivariate analyses sometimes depend heavily on a small number of observations, we should be very careful to draw a conclusion. Similar phenomena may also occur in the case of incomplete data. In this research we try to study such influential observations in multivariate statistical analysis of incomplete data. Case of principal component analysis is studied with a numerical example.

  • PDF

Generalized Multi-Phase Multivariate Ratio Estimators for Partial Information Case Using Multi-Auxiliary Vatiables

  • Ahmad, Zahoor;Hanif, Muhammad;Ahmad, Munir
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.5
    • /
    • pp.625-637
    • /
    • 2010
  • In this paper we propose generalized multi-phase multivariate ratio estimators in the presence of multiauxiliary variables for estimating population mean vector of variables of interest. Some special cases have been deduced from the suggested estimator in the form of remarks. The expressions for mean square errors of proposed estimators have also been derived. The suggested estimators are theoretically compared and an empirical study has also been conducted.

Multivariate Normality Tests Based on Principal Components

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.765-777
    • /
    • 2003
  • In this paper, we investigate some measures as tests of multivariate normality based on principal components. The idea was proposed by Srivastava and Hui(1987). They generalized Shapiro-Wilk statistic for multi variate cases. We show the null distributions of the statistics do not depend on the unknown parameters and mention the asymptotic null distributions. Also power performance of the tests are assessed in a Monte Carlo study.

A Simple Chi-squared Test of Multivariate Normality Based on the Spherical Data

  • Park, Cheolyong
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.117-126
    • /
    • 2001
  • We provide a simple chi-squared test of multivariate normality based on rectangular cells on the spherical data. This test is simple since it is a direct extension of the univariate chi-squared test to multivariate case and the expected cell counts are easily computed. We derive the limiting distribution of the chi-squared statistic via the conditional limit theorems. We study the accuracy in finite samples of the limiting distribution and then compare the poser of our test with those of other popular tests in an application to a real data.

  • PDF

Test for an Outlier in Multivariate Regression with Linear Constraints

  • Kim, Myung-Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.473-478
    • /
    • 2002
  • A test for a single outlier in multivariate regression with linear constraints on regression coefficients using a mean shift model is derived. It is shown that influential observations based on case-deletions in testing linear hypotheses are determined by two types of outliers that are mean shift outliers with or without linear constraints, An illustrative example is given.

On an Approximation for Calculating Multivariate t Orthant Probabilities

  • Hea Jung Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.629-635
    • /
    • 1997
  • An approximation for multivariate t probability for an orhant region(i.e., a rectangular resion with lower limits of $-\infty$ for all margins) is proposed. It is based on conditional expectations, a regression with binary variables, and the exact formula for the evalution of the bivariate t integrals by Dunnett and Sobel. It is noted that the proposed approximation method is espicially useful for evaluating the multivariate t integrals where there is no simple method available until now.

  • PDF

Multivariate EWMA Control Charts for Monitoring Dispersion Matrix

  • Chang Duk-Joon;Lee Jae Man
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.265-273
    • /
    • 2005
  • In this paper, we proposed multivariate EWMA control charts for both combine-accumulate and accumulate-combine approaches to monitor dispersion matrix of multiple quality variables. Numerical performance of the proposed charts are evaluated in terms of average run length(ARL). The performances show that small smoothing constants with accumulate-combine approach is preferred for detecting small shifts of the production process.

More on directional regression

  • Kim, Kyongwon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.553-562
    • /
    • 2021
  • Directional regression (DR; Li and Wang, 2007) is well-known as an exhaustive sufficient dimension reduction method, and performs well in complex regression models to have linear and nonlinear trends. However, the extension of DR is not well-done upto date, so we will extend DR to accommodate multivariate regression and large p-small n regression. We propose three versions of DR for multivariate regression and discuss how DR is applicable for the latter regression case. Numerical studies confirm that DR is robust to the number of clusters and the choice of hierarchical-clustering or pooled DR.

Applications of response dimension reduction in large p-small n problems

  • Minjee Kim;Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.2
    • /
    • pp.191-202
    • /
    • 2024
  • The goal of this paper is to show how multivariate regression analysis with high-dimensional responses is facilitated by the response dimension reduction. Multivariate regression, characterized by multi-dimensional response variables, is increasingly prevalent across diverse fields such as repeated measures, longitudinal studies, and functional data analysis. One of the key challenges in analyzing such data is managing the response dimensions, which can complicate the analysis due to an exponential increase in the number of parameters. Although response dimension reduction methods are developed, there is no practically useful illustration for various types of data such as so-called large p-small n data. This paper aims to fill this gap by showcasing how response dimension reduction can enhance the analysis of high-dimensional response data, thereby providing significant assistance to statistical practitioners and contributing to advancements in multiple scientific domains.