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Abstract
The goal of this paper is to show how multivariate regression analysis with high-dimensional responses is

facilitated by the response dimension reduction. Multivariate regression, characterized by multi-dimensional re-
sponse variables, is increasingly prevalent across diverse fields such as repeated measures, longitudinal studies,
and functional data analysis. One of the key challenges in analyzing such data is managing the response dimen-
sions, which can complicate the analysis due to an exponential increase in the number of parameters. Although
response dimension reduction methods are developed, there is no practically useful illustration for various types
of data such as so-called large p-small n data. This paper aims to fill this gap by showcasing how response
dimension reduction can enhance the analysis of high-dimensional response data, thereby providing significant
assistance to statistical practitioners and contributing to advancements in multiple scientific domains.

Keywords: high-dimensional data analysis, large p-small n data, model-based reduction, multi-
variate regression, response dimension reduction

1. Introduction

In the domain of statistical analysis, sufficient dimension reduction (SDR) has gained prominence
as an effective tool for dimension reduction in regression contexts. SDR focuses on transforming
predictor variables into a lower-dimensional linear format while preserving essential information per-
tinent to regression. Moreover, the application of multivariate regression, denoted as Y ∈ Rr |X ∈ Rp

with r ≥ 2, is becoming widespread across numerous disciplines, as evidenced by the works of Li et
al. (2011), Im et al. (2015), Lee et al. (2019), and Ko and Yoo (2022).

Principal component analysis (PCA) stands as a notable method for dimension reduction, fre-
quently utilized in regression to diminish the dimensions of regressors. However, PCA’s limitation
in not accounting for response variables can lead to significant information loss during the dimen-
sion reduction process. As a result, various SDR techniques like sliced inverse regression (Li, 1991),
sliced average variance estimation (Cook and Weisberg, 1991), contour regression (Li et al., 2005),
and directional regression (Li and Wang, 2007) have been developed within the realm of multivariate
regression to adeptly capture the variability in Y while compressing the dimensions of X. Further
advancements and applications of these techniques in multivariate regression have been extensively
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explored by Cook and Setodji (2003), Yoo and Cook (2007), Yoo et al. (2010), Yoo (2013), and Yoo
(2018).

Nevertheless, the drive to reduce the dimensions of response variables in multivariate regression
should be motivated. When the sample sizes (n) of data are considerably smaller than the dimen-
sions of predictors (p) or responses (r), it exacerbates the complexity of statistical analysis and leads
to an exponential increase in the number of parameters, often resulting in the curse of dimensional-
ity. In addressing the challenges of large p-small n problems, this study draws upon seminal works
such as those by Hung and Huang (2019) and Yin and Hilafu (2015), which have contributed to the
development and application of response dimension reduction techniques in such contexts.

Recognizing the complexities inherent in multivariate regression analysis, this paper endeavors
to demonstrate the effective use of response dimension reduction techniques. It focuses on compar-
ing predictor and response dimensions with sample sizes, illustrating how these variables interact in
different analytical scenarios. The paper blends practical application with theoretical advancements,
highlighting the evolution and pivotal role of response dimension reduction methodologies in this
field.

Yoo and Cook (2008) established a foundation for response dimension reduction in multivariate
regression, ensuring no loss of information on E(Y|X). This approach delineated two forms of re-
sponse dimension reduction—linear and conditional—and introduced a non-parametric technique for
estimating linear response reduction. Yoo (2013) explored the theoretical relationship between linear
and conditional response reduction in the envelope model context, as proposed by Cook et al. (2010).
This inquiry set the stage for model-based response dimension reduction. Building upon this, Yoo
(2018) proposed two novel model-based methods for response dimension reduction, showcasing their
advantages over previous methods through both numerical studies and real data applications. Further
advancing in this field, Yoo (2019) expanded upon the covariance structure from Yoo (2018) and de-
veloped new theoretical frameworks for the reduction subspace and its estimation, also supported by
detailed simulation studies that demonstrate the efficacy of these advancements.

The structure of this paper is designed to provide a comprehensive understanding of response
dimension reduction in multivariate regression. Section 2 introduces four key methodologies in re-
sponse dimension reduction, followed by Section 3, which details the implementation strategies con-
sidering variable dimensions and sample sizes. Section 4 demonstrates the practical application of
these methodologies through the analysis of real datasets, and the paper concludes in Section 5 with a
summary of the findings and insights gained from this research.

Throughout this paper, specific notation conventions are adopted for clarity and consistency. A
random variable with p dimensions, represented as X ∈ Rp without any explicit mention. For random
variables X ∈ Rp and Y ∈ Rr, their covariances are denoted as cov(X) = Σx and cov(Y) = Σy, respec-
tively. It is assumed that both Σx and Σy are positive-definite matrices. Furthermore, the notation S(·)
is used to denote the subspace spanned by the columns of a given matrix.

2. Response dimension reduction methodologies

2.1. Non-parametric method

Consider a multivariate regression scenario with Y ∈ Rr |X ∈ Rp. We propose the existence of a
r × q matrix L, which has the lowest rank while fulfilling the relation for E(Y|X) as follows:

E (Y | X) = E
{
PT

L(Σy)Y | X
}
, (2.1)
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where q ≤ r and PL(Σy) = L(LTΣyL)−1LTΣy serves as an orthogonal projection operator relative to the
inner product < ω1, ω2 >Σy= ωT

1Σyω2.
Equation (2.1) implies that the impact of predictors X on the conditional mean E(Y|X) is mediated

only through PL(Σy). Hence, the transformed PT
L(Σy)Y effectively replaces the original response Y,

without loss information about E(Y|X). This concept is referred to as linear response reduction in
Yoo and Cook (2008).

Further, suppose a r × k matrix K exists, satisfying the equivalences in:

E (Y | X) = E
{
E(Y | X,KTY) | X

}
= E

{
E

(
Y | KTY

)
| X

}
= E

{
g
(
KTY

)
| X

}
, (2.2)

where k ≤ r,K , Ir and g(·) represents an unknown function.
By equation (2.2), another dimension reduction of Y can be done, and this response reduction is

called conditional response reduction when k < r. As detailed in Yoo and Cook (2008), the column
spaces of matrices L and K are identified as a response dimension reduction subspace.

Yoo and Cook (2008) demonstrate S(K) ⊆ S(L) and S(K) = S(L) under certain conditions:
E(Y|KTY = a) is linear in a. This condition holds when Y follows an elliptical distribution. Under
the condition, the quantity Σ−1

y cov(Y,XT)Σ−1
x is proposed in Proposition 3 of Yoo and Cook (2008)

to estimate L and K. We propose to refer to such non-parametric dimension reduction method as the
YC-method, and it needs the inverses of Σ̂x and Σ̂y.

2.2. Principal response reduction

In this section, we analyze a multivariate regression model under the assumption that both E(Y)
and E(X) are zero without loss of generality:

Y = Γvx + ε. (2.3)

Here, Γ is an orthogonal matrix belonging to Rr×d, where d ≤ r, ε ∼ N(0,Σ), and cov(vx, ε) = 0. The
function vx represents a d-dimensional unknown random function of the predictors X, characterized
by a positive definite sample covariance, and Σxvx = 0. Notably, if vx = X, this model aligns with the
standard multivariate linear regression.

A key premise of the model (2.3) is that the subspace S(Γ) is invariant and acts as a reducing
subspace for Σ. This condition ensures the decomposition of Σ into ΓΩΓT + Γ0Ω0Γ

T
0, with Γ0 ∈

Rr×(r−d), ΓT
0Γ0 = Ir−d, and ΓT

0Γ = 0. Here, Ω represents ΓTΣΓ, and Ω0 is ΓT
0ΣΓ0.

As per Yoo (2018), within this model (2.3), it is established that E(Y|X) = E(PT
Γ(Σy)Y|X). Essen-

tially, this implies that the response Y can be effectively condensed using Γ, without compromising
the informational value of E(Y|X).

The estimation of Γ in this model involves maximizing the likelihood function, under the assump-
tion of ε being normally distributed. Here, Σ̂y is utilized as the conventional moment estimator for
Σy. Yoo (2018) demonstrates that the maximum likelihood estimator (MLE) for Γ is derived from
the eigenvectors corresponding to the first d largest eigenvalues of Σ̂y. This method of dimension
reduction is known as principal response reduction (PRR).

2.3. Principal fitted response reduction

In PRR, the estimation of Γ does not consider the predictors X. To integrate X into the model, we
assume vx = ψfx:

Y = Γψfx + ε. (2.4)



194 Minjee Kim, Jae Keun Yoo

Here, ψ represents an unknown d × q matrix, and fx, a q-dimensional known vector function of X,
satisfies Σxfx = 0. For clarity, we introduce the following notations:

Y : an n × r matrix representing response data.

X : an n × p matrix representing predictor data.

F : a n × q matrix formed by stacking fT
x, with PF = F(FTF)−1FT.

Σ̂fit = YTPFY/n and Σ̂res = Σ̂y − Σ̂fit.

The MLE for Γ in model (2.4) does not have a closed-form solution. The likelihood function for
Γ, as per Yoo (2018), is given by:

L (Γ,Γ0) = −
n
2

log
∣∣∣ΓT

0Σ̂yΓ0
∣∣∣ − n

2
log

∣∣∣ΓTΣ̂resΓ
∣∣∣ .

Thus, the estimation of Γ is influenced by both Σ̂y and Σ̂res. A sequential selection algorithm,
which involves choosing from the eigenvectors of Σ̂y, Σ̂fit, and Σ̂res, as recommended by Cook (2007),
is employed. This method of estimating Γ is termed principal fitted response reduction (PFRR), and
it necessaries only the inverse of FTF for reducing the response dimensions.

2.4. Unstructured principal fitted response reduction

In this model, we assume that ε ∼ N(0,Σ > 0), and cov(vx, ε) = 0:

Y = Γvx + ε. (2.5)

A key distinction between this model (2.5) and the previous model (2.3) lies in the structure of Σ.
In model (2.5), the condition Σ = ΓΩΓT + Γ0Ω0Γ

T
0 is no longer a requisite.

Yoo (2019) illustrates that for Σ and Σy to meet the invariant condition, S(ΣΓ) ⊆ S(Γ) if and only
if S(ΣyΓ) ⊆ S(Γ). Consequently, for model (2.5), it is deduced that E(Y|X) = E(PT

Γ(Σy)Y|X) if S(Γ)
is invariant for Σy. Henceforth, this invariant condition for Γ relative to Σy is assumed.

To integrate the predictor X into the estimation of Γ, the model is augmented as:

Y = Γψfx + ε. (2.6)

The following quantities are defined for this model:

Ed and Sd(E) : The first d largest eigenvectors of a matrix E and the column subspace of Ed.

B = Σ̂
−1/2
Σ̂fitΣ̂

−1/2
,Bres = Σ̂

−1/2
res Σ̂fitΣ̂

−1/2
res , and By = Σ̂

−1/2
y Σ̂fitΣ̂

−1/2
y .

Λ̂ = (λ̂1, . . . , λ̂q) and V̂ = (γ̂1, . . . , γ̂q) : Ordered eigenvalues and corresponding eigenvectors of
Bres.

K̂d : diag(0, . . . , 0, λ̂d+1, . . . , λ̂q).

Yoo (2019) derives the following results under model (2.6):

(1) Ŝ(Γ) = Σ̂
1/2
Sd(B) or equivalently, Γ̂ = Σ̂

1/2Bd.
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Table 1: Feasible response dimension reduction methods according to p, r and n

Relation between p, r, and n Methods
Case 1 max(p, r) < n YC-method, PRR, PFRR, UPFRR
Case 2 p ≥ n, but r < n PRR
Case 3 p < n, but r ≥ n PRR, PFRR
Case 4 min(p, r) ≥ n PRR

(2) Σ̂ = Σ̂res + Σ̂
1/2
res V̂K̂dV̂TΣ̂

1/2
res = Σ̂

1/2
res (Ir + V̂K̂dV̂T)Σ̂

1/2
res .

(3) Ld
UPFRR

= (−n/2) log |Σ̂res| + (n/2)Σq
i=d+1 log(1 + λ̂i).

(4) Ŝ(Γ) = Σ̂
1/2
Sd(B) = Σ̂

1/2
res Sd(Bres) = Σ̂

1/2
y Sd(By).

Thus, it needs the inverses of Σ̂res and FTF to reduce the response dimensions, related to Bres. This
method in model (2.6) is termed unstructured principal fitted response reduction (UPFRR).

3. Implementation along with sample sizes

The selection of an appropriate response dimension reduction method hinges on the dimensions
of the predictors (p) and responses (r), relative to the sample size (n). Notably, the YC-method and
UPFRR require the inverses of Σ̂x and Σ̂y, and the inverses of Σ̂res and FTF, respectively. Therefore,
these methods are only feasible when both p and r are smaller than n. In contrast, the PFRR method
demands the invertibility of FTF alone, necessitating p < n to satisfy full rank. The PRR method, due
to the spectral decomposition of Σ̂y, does not impose specific constraints onto p, r, and n. Table 1
summarizes the feasible methods based on the relationships between p, r, and n.

To align scenarios in cases 2–4 with the more generalized model of case 1 (where both predictors
and responses are smaller than the sample size), initial dimension reduction steps are necessary. These
preliminary steps are crucial in establishing conditions where methods such as the YC-method, PFRR,
and UPFRR become applicable.

In case 2, where p ≥ n and r < n, reducing the dimensions of predictors is essential. This can be
achieved through multivariate seeded dimension reduction, as suggested by Yoo and Im (2014),
thereby enabling the application of the YC-method, PFRR, and UPFRR.

For case 3, with p < n and r ≥ n, the initial reduction of response dimensions is imperative.
Employing PRR and PFRR for this purpose allows the subsequent use of the YC-method and
UPFRR.

In case 4, where both p and r are greater than or equal to n, PRR is the only applicable method.
Starting with PRR for initial response reduction, reducing the dimensions of predictors similar to
case 2 facilitates the application of the YC-method, PFRR, and UPFRR.

Since cases 2–4 necessitate initial reduction steps, it’s crucial to meticulously examine and com-
pare the final response dimension reduction outcomes to assure their validity and accuracy.

The seedCCA package, as discussed in Kim et al. (2021), offers two datasets: Near-infrared
(NIR) spectroscopy of biscuit doughs and Nutrimouse data, exemplifying cases 2 and 3, respectively.
In case 2, the scenario converges with case 1 after reducing the dimensions of predictors. Thus, a
distinct example for case 1 is omitted in this paper, as it is extensively covered in Yoo and Cook
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Table 2: UPFRR and PFRR results for cookie data

(a) UPFRR test summary

Comparison Stat df p-value
0D vs ≥ 1D 340.9 32 <0.0001
1D vs ≥ 2D 159.4 21 <0.0001
2D vs ≥ 3D 27.39 12 0.0068
3D vs ≥ 4D 9.508 5 0.0904

(b) PFRR test summary

Comparison Stat df p-value
0D vs ≥ 1D 340.9 32 <0.0001
1D vs ≥ 2D 196.1 24 <0.0001
2D vs ≥ 3D 63.80 16 <0.0001
3D vs ≥ 4D 11.38 8 0.1809

Stat, df, p-value are from Asymp. Chi-square tests for dimension.

Table 3: Cumulative variance of 1–4 dimensions with each response dimension reduction method

Method 1D 2D 3D 4D
UPFRR 0.1136 0.3470 0.6676 1.0000
PFRR 0.1915 0.4281 0.7059 1.0000
PRR 0.7085 0.9902 1.0000 1.0000

Cumulative variance values are calculated based on the proportion of eigenvalues.

(2008) and Yoo (2018). Case 4, while not explicitly exemplified, can be understood as a sequential
process—initially applying PRR as in case 3, followed by reducing the dimensions of predictors akin
to case 2.

4. Real data applications

4.1. Near-infrared spectroscopy of biscuit doughs data (case 2: p ≥ n and r < n)

The cookie dataset from the seedCCA package (Kim et al., 2021) consists of quantitative near-
infrared (NIR) spectroscopy measurements from biscuit dough experiments, which aims to test the
feasibility of NIR spectroscopy. This dataset focuses on four key ingredients: Fat (Y1), sucrose (Y2),
dry flour (Y3), and water (Y4), whose percentages vary from the standard recipe and constitute the
response variables. The predictors are wavelengths measured by spectroscopy, spanning from 1380
to 2400nm at 4nm intervals, resulting in 256 dimensions.

In the cookie dataset, the first 40 samples form the training set, excluding the 23rd one identified
as an outlier. The remaining 32 samples serve as the test set, which also excludes an outlier, the 21st

observation. Thus, the dimensions of the training and test sets for the predictors are 39 × 256 and
31 × 256, respectively, while for the response variables, the dimensions are 39 × 4 for the training set
and 31 × 4 for the test set.

Given the higher number of predictors compared to the sample size in the training data, dimension
reduction of predictors is necessary for applying UPFRR and PFRR. This reduction is performed using
multivariate seeded reduction (Yoo and Im, 2014). During this process and subsequent analysis, the
response variables are standardized to have zero mean and unit variance, ensuring numerical stability
in the predictor dimension reduction and the partial least squares fit. The pseudoinverse function
from the corpcor package (Schafer et al., 2017) is utilized for computing a general inverse of matrices.
The analysis shows that four iterations of projections are required, reducing the 256-dimensional
predictors to four dimensions, denoted as Rx.

With these dimension-reduced predictors, UPFRR, PFRR, and PRR are applied. In this analysis,
UPFRR and PFRR both suggest reducing the response to three dimensions, with a 5% significance
level as shown in Table 2. In contrast, the PRR analysis reveals a variance distribution that differs from
the results of UPFRR and PFRR. The first two components of PRR account for approximately 70.85%
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Figure 1: Scatter plot matrix of (Ry,Rx) for cookie data.

and 99.02% of the cumulative variance as shown in Table 3, implying that UPFRR and PFRR may
overestimate the number of necessary dimensions. To investigate, the trace correlation coefficients
(Hooper, 1959) are calculated between the first two and three components of UPFRR, PFRR, and
PRR. Here, given two matrices A1 and A2, and a parameter q representing the number of principal
components to consider, the trace correlation r̄ can be calculated using the formula:

r̄ =

√∑q
i=1 λi

q
, (4.1)

where λi are the eigenvalues of the matrix P = AT
1A2AT

2A1. The trace correlation coefficients of the
first two components of UPFRR and PFRR, UPFRR and PRR, PFRR and PRR are 0.9247, 0.9218,
and 1, respectively, and for the first three components, all of them equal to 1. This similarity suggests
that UPFRR, PFRR, and PRR yield comparable reduction results, indicating that a two-dimensional
response might suffice for regression, as implied by PRR’s cumulative eigenvalue proportions. Thus,
the two-dimensional responses derived from PFRR are used in place of the original four-dimensional
responses.

Interpreting the reduced responses through their estimated coefficients, the first component ap-
pears to be a linear combination of sucrose (Y2), dry flour (Y3), and water (Y4), while the second
component primarily represents fat (Y1).

Four models are fitted for prediction using the test data. Initially, two multivariate linear regres-
sions are performed: One with both dimension-reduced responses and predictors (Ry,Rx), and another
with original responses alongside dimension-reduced predictors (Y,Rx). The scatter plot matrix for
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Table 4: MSPE results for cookie data

Model Y1 Y2 Y3 Y4
(Ry,Rx) 0.0901 0.0462 0.0452 0.0471
(Y,Rx) 0.0937 0.0463 0.0506 0.0470
(Ry,X) 0.0397 0.0418 0.0462 0.0400
(Y,X) 0.0396 0.0418 0.0495 0.0392

Table 5: Cumulative variance of 1–6 dimensions with PRR method for nutrimouse data

Dimension 1D 2D 3D 4D 5D 6D
Variance 0.4038 0.6949 0.8623 0.9554 0.9726 0.9835

(Ry,Rx) is included in Figure 1. For comparison, Ry are subsequently converted back to their four-
dimensional from two-dimensional form.

Next, multivariate partial least squares regression is conducted in two variations:
One with dimension-reduced responses and original predictors (Ry,X), and the other with original
responses and predictors (Y,X). For these latter two fits, the mvr function from the pls package (Liland
et al., 2021) is utilized, with cross-validation suggesting that 6 components are optimal.

To evaluate the prediction accuracy in the test data, the mean squared prediction error (MSPE =

(1/(n × r))
∑n

i=1
∑r

j=1(yi j − ŷi j)2) is calculated for each of the models ((Ry,Rx), (Y,Rx), (Ry,X), (Y,X))
and compared (Table 4). It is observed that using dimension-reduced predictors slightly compromises
accuracy, particularly for Y1 (fat). However, this reduction in predictor dimensions does not sig-
nificantly impact the accuracy of response dimension reduction. Comparing the fits of (Ry,Rx) with
(Y,Rx) and (Ry,X) with (Y,X), no substantial differences are noted in prediction accuracy. Interestingly,
for Y3 (dry flour), using dimension-reduced responses actually enhances prediction accuracy in both
cases, albeit marginally. This suggests that response reduction in high-dimensional data can stream-
line modeling processes without sacrificing prediction accuracy compared to using original responses.

4.2. Nutrimouse data (case 3 : p < n and r ≥ n)

The nutrimouse dataset, integral to a nutritional study on mice, is accessible through nutrimouse
in the seedCCA package (Kim et al., 2021). This dataset encompasses data from 40 mice, featuring
measurements of 120 genes and 21 lipids. The mice are classified into two genotypes: Wild type and
PPARalpha. Additionally, they are subjected to five different diets: COC (hydrogenated coconut oil
for a saturated FA diet), FISH (corn, colza, enriched fish oils), LIN (linseed oil for an ω3-rich diet),
REF (corn and colza oils), and SUN (sunflower oil for anω6 FA-rich diet), with each diet administered
to 8 distinct mice.

The primary objective is to ascertain if there are significant differences in gene and lipid profiles
based on genotype and diet. The response variables are genes and lipids, totaling 141 dimensions,
which notably exceed the sample size (n = 40). This dimensionality precludes the use of conventional
multivariate analysis of variance for examining genotype and diet influences. Hence, dimension re-
duction of the response variables is necessary. Given that all predictors are categorical, PFRR is not
the most suitable option, despite being feasible. Therefore, PRR is the preferable choice in this con-
text. By applying PRR, the first four components capture over 95% of the total variation as shown in
Table 5, effectively reducing the responses from 141 dimensions to four.

Scatterplot matrices of the four-dimensionally reduced responses (Ry), labeled by genotype and
diet, are illustrated in Figure 2. As depicted in Figure 2(a), Ry2 and Ry3 distinctly separate genotypes,
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Figure 2: Scatter plot matrices of the reduced responses marked by genotype and diet.
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Figure 3: Scatter plots of Ry2 and Ry3 marked by genotype and of Ry1 and Ry4 marked by diet.

while Ry1 and Ry4 more effectively differentiate diets in Figure 2(b). This suggests that Ry2 and Ry3
are primarily associated with genotype, whereas Ry1 and Ry4 correlate more with diet. Moreover,
Figure 3 hints at a potential interaction between genotype and diet, with detailed views of the scatter
plots for Ry2 and Ry3 marked by genotype, and Ry1 and Ry4 marked by diet.

Subsequently, a multivariate analysis of variance, incorporating genotype, diet, and their interac-
tion, is conducted using the four-dimensional responses. Table 6 indicates that all effects are signifi-
cant at a 5% level.
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Table 6: MANOVA results for nutrimouse data

Effect df Pillai’s trace Approx. F Pr(>F)
Genotype 1 0.9070 65.825 1.574e-13 ***

Diet 4 3.0805 25.125 < 2.2e-16 ***
Genotype:Diet 4 2.0993 8.284 4.339e-13 ***

Residuals 30 - - -

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 7: Pairwise comparison results for nutrimouse data

(a) Pairwise comparison in wild type

Contrast Estimate df t-ratio p-value
coc-fish −8.935 15 −23.833 <.0001
coc-lin −9.714 15 −25.912 <.0001
coc-ref −3.401 15 −9.072 <.0001
coc-sun −1.627 15 −4.341 0.0006
fish-lin −0.779 15 −2.079 0.0552
fish-ref 5.534 15 14.762 <.0001
fish-sun 7.308 15 19.492 <.0001
lin-ref 6.313 15 16.841 <.0001
lin-sun 8.087 15 21.571 <.0001
ref-sun 1.774 15 4.731 0.0003

(b) Pairwise comparison in PPARalpha

Contrast Estimate df t-ratio p-value
coc-fish −9.817 15 −15.126 <.0001
coc-lin −9.370 15 −14.437 <.0001
coc-ref −2.794 15 −4.305 0.0008
coc-sun −4.435 15 −6.833 <.0001
fish-lin 0.447 15 0.689 0.5013
fish-ref 7.023 15 10.821 <.0001
fish-sun 5.382 15 8.293 <.0001
lin-ref 6.576 15 10.132 <.0001
lin-sun 4.935 15 <.0001 <.0001
ref-sun −1.641 15 0.0258 0.0258

P-value adjustments calculated based on fdr method with 10 tests.

To further explore the dietary factor-level means, the dataset is segregated based on genotype,
resulting in two distinct groups. A pairwise comparison is conducted in Table 7 to assess the di-
etary effects. This comparison is carried out using the test function in the lsmeans package (Lenth,
2016), with the false discovery rate controlled at 10% as per the method suggested by Benjamini and
Hochberg (1995). Table 7(a) reveals that in the wild type genotype, all dietary variations are signif-
icantly different from each other. Conversely, for the PPARalpha genotype, no notable distinction
is observed between the fish and linseed oil diets (Table 7(b)). This disparity in dietary response of
genotypes underscores the significance of the interaction between genotype and diet.

5. Discussion

This paper focuses on the challenges presented by the multi-dimensionality of response variables
in the context of multivariate regression, specifically where Y ∈ Rr |X ∈ Rp. The recent advancements
in methodologies for response dimension reduction, which aim to preserve information in E(Y|X),
mark a significant step forward in addressing these complexities. These methodologies serve to sim-
plify complex data structures without losing essential information, a critical aspect in statistical anal-
ysis.

The core of this paper lies in illustrating the practical use of response dimension reduction across
different scenarios defined by the relationships between the dimensions of predictors (p), responses
(r), and sample sizes (n). Through the analysis of two real datasets - NIR spectroscopy of cookie
data and nutrimouse data - the paper provides insightful outcomes of these methodologies. The study
on NIR spectroscopy highlights the necessity of response dimension reduction in cases where the
number of predictors considerably surpasses the sample sizes. The analysis indicates that, although
dimension reduction may slightly impact the accuracy in certain variables, the overall predictive ac-
curacy is largely maintained. The analysis of the nutrimouse data further exemplifies the utility of
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response dimension reduction in scenarios where the dimensions of the responses are greater than the
sample sizes. The reduction achieved simplifies the model without sacrificing the integrity of the data,
enabling clearer interpretations and more efficient statistical modeling.

In both cases, the focus on response dimension reduction streamlines the process of dealing with
high-dimensional data, making it more manageable for practitioners across various scientific fields.
Particularly, the identification of significant interaction effects in the nutrimouse data, which might
have been challenging to discern without effective dimension reduction, underscores the value of these
methodologies.

While this paper highlights the effectiveness of response dimension reduction methodologies in
multivariate regression, it is important to acknowledge limitations. The methodologies may struggle
to capture non-linear relationships in scenarios beyond case 1, particularly when dealing with high-
dimensional data. Additionally, the absence of real data applications for case 4 and the variable
performance of response dimension reduction methods across different datasets point to the need for
further research.
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