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Test for an Outlier in Multivariate Regression
with Linear Constraints
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Abstract

A test for a single outlier in multivariate regression with linear constraints on
regression coefficients using a mean shift modet is derived. It is shown that
influential observations based on case-deletions in testing linear hypotheses are
determined by two types of outliers that are mean shift outliers with or without
linear constraints. An illustrative example is given,
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1. Introduction

QOutliers are everywhere and they can distort relevant statistical analyses. Hence methods of
detecting outliers are necessary for statistical models of our interest. Outlier detections in
multivariate regression have been pursued by some authors, for example Barrett and Ling
(1992), Kim (1995) and Srivastava and Rosen (1998). Tests of linear hypotheses about
regression coefficients are a fundamental step in analyzing regression data. When there are
linear relationships among regression coefficients, we need an appropriate method of detecting
outliers for this situation. However, no method is available for multivariate regression with
linear constraints.

In this work we will derive a test for a single outlier in multivariate regression with linear
constraints using a mean shift model. In Section 2 some basic results in multivariate
regression are reviewed. In Section 3 a mean shift model for detecting a single outlier with
linear constraints is defined and a test for detecting an outlier is derived. In Section 4 we will
show that the change in Wilks lambda statistic for testing linear hypotheses due to single
case—deletions is determined by two types of statistics that are used for detecting mean shift
outliers with or without linear constraints. An illustrative example is given in Section 5.
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2. Preliminaries

Consider the multivariate regression model

Y= X B+ U,
where Y = (y,..., y,,)T is an n by p matrix of response variables,
X = (x,..., xn)T 1s an n by q matrix with rank g of independent variables, and B is

a q by p matrix of unknown parameters. We assume that the rows of

U= (u,..., u,,)T are independent and identically distributed as a p-variate normal

distribution with mean 0 and covariance matrix Y. Further assume that we have linear
constraints on B

AB = C, (1)
where A is a specified r by q matrix of rank r (# < ¢ ) and C is a specified r by p

matrix. The least squares estimator of B under the linear constraints (1) is given by

—~

Bo= Br — (X' X 'A"TA(X" X 'ATI (A Br— O, )
where /EF = ( x7 xX) ! X7 Y. For more details, see Chap. 8 of Seber (1984).

3. Test For An OQOutlier

When there is a shift in the mean of the i-th observation y; among n observations, a

mean shift model for detecting a single outlier can be expressed as
Y= XB+ d;¢ + U= X.B. + U, 3)

where ¢ is a p by 1 vector of unknown shift parameters, d; is the i-th column of the
identity =~ matrix I, of size n, X. =[X d;] and B, = [ ¢BT] Let

A, = [ A 0 ]. For the mean shift model (3) the linear constraints (1) imposed on B
is converted into
A, B, = AB = C (4)

Hence the least squares estimator of B, for the mean shift model (3) under the linear
constraints (4) has the same form as that of /50 in (2) with X and A replaced by X.
and A. , respectively. An appropriate partitioning of the least squares estimator of B, and

a little complicated algebra provide the least squares estimator of ¢ as
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- _ €0,
b0 1= hys’ 5)
~ T
where ey ; = y; — B, x;, hy;is the i-th diagonal element of

H = H-X(X'X'ATTacx™x'AN1'a(x"x ' x7
and H= X(X "X 'Xx"
A significant deviation of ¢ from zero vector implies that the i-th observation is an

outlier, and an outlier may occur in ¥;, x; or both under the mean shift model (3) with

linear constraints (4). In order to check the outlyingness of the i-th observation, we need to
perform a test of the following hypothesis

H: ¢ =0 6)

which can be done as in what follows. To this end, we first need the sampling distribution

of /;50 in (5) that is derived as follows. Under the linear constraints it is easily shown that

E(ey;) = ¢. We can write ey ; as a linear combination of the y; plus a constant
. . 2 ~ .
term and then easily get cov( ey ;) = (1—hy )% since H,” = . H, Hence ¢ is

distributed as
B0 ~ NCS/(1—ho ), E/(1—hg ).

Next, let Sy = (Y- X /EO) My-Xx /1\30). For an arbitrary matrix W, W, s

interpreted as W computed from the sample without the i-th observation. Then we have

T
€o,i €y,

oo = S0T T

(N

(see Tang & Fung, 1997). The sampling distribution of S can be derived as follows. Let
E, = Y- X /BO. Then it is easily shown that E; = ( I, — Hy) U under the

linear constraints. Hence we have e;; = UT( I, — H,) d; By using (7) we obtain

1

‘—"—( I”— Ho) d,‘ d,‘T( I,,— Ho) It
l_hO.iz‘

Sey = U QU where Q = I,— Hy—

can be shown that @ is idempotent, and we have rank( @) = n-q+r-1. By Theorem 3.4.4(2)
of Mardia et al. (1979), S is distributed as a Wishart distribution Wy 2, n—qg+r—1).

Since @ is idempotent and Q( I, — H;) d;= 0, Corollary 3 of Seber (1984,. p.25) shows

that Sy and ey ; are independent. Hence we can obtain a test statistic for performing a

test of the hypothesis (6) given by
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T 1

T. — n=p—gtr €q,i Tso_ leO,i/(l_hO,h‘) 8)
l b 1= epi So e i/(1~hya)
which is distributed under ¢ = 0 as a F-distribution F, ,_,_ 4+, with degrees of freedom

p and n-p-g+r. A significantly large value of 7, indicates the outlyingness of the i-th

observation.
The test statistic in (8) is used only when the i-th observation is known as an outlier.
When we do not know which observation is an outlier, the test is usually based on the

maximum of the 7T; over all i. However, it is not easy to derive the sampling distribution of

max ;<;<,7; in most cases and we often use the following Bonferroni upper bound

Pr(max <<, T: = ) < Z}l Pr(T; > D = nPAT, = D.

For a significance level «, the test based on the Bonferroni upper bound rejects the
hypothesis (6) if max j<i<,T; > Fy p-p-g+(1L—a/n), where F, ,_, .0 A7) is the

100 X yth percentile of the F, ,-,-4+, distribution and the Bonferroni upper bound for the
p-value of this test is

p—value < nPr(F , ., ,+, random variable > the observaed value of max j<;<, T; ).

4. Types of Influential Observations

A test of the linear hypothesis defined by (1) can be performed by using some test
statistics in which Wilks lambda statistic is often adopted and it is given by

A= |SI/| S|, where S = (Y—X Bp( Y- X Bp.
Observations that have a large influence in testing the linear hypothesis are usually called
influential observations. Case-deletion method is one way to investigate the influence of

observations in testing the linear hypothesis. Tang and Fung (1997) obtained the change in
the value of Wilks lambda statistic due to removal of the i-th observation from which we can

get the ratio of /A () to A as follows

T -1
1—- e; S e; l_h,','
A ([)/A = T —1 /( ) , (9)
1— eo:i” Sy eqi/(1—how)
~ T
where e; = y; — By x; and h; is the i~th diagonal element of H. In view of

(8), the quantity in the denominator of (9) determines the outlyingness of observations for the

mean shift model with linear constraints because a significantly large value of

eo',~T Sy ! e :/{(1—hy ;) indicates that the i-th observation is a mean shift outlier.
Similar roles of e,~T s e;/(1—h,;) of the numerator of (9) in the mean shift model
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without any constraint can be seen by putting A= C= 0 in Section 3. Hence influential
observations based on case-deletions are determined by two types of outliers that are mean
shift outliers with or without linear constraints (1).

5. Example

For illustration we consider the adaptive score data (Cook and Weisberg, 1982, p.22). The
adaptive score data includes 21 observations for children with one independent variable x (the

age of a child in months) and one response variable y; (Gesell adaptive score). In order to

prepare bivariate data we drew 21 observations for the error term by generating random
numbers from a normal distrbution with mean 0 and variance 1 and then computed the values

of the second response variable y, according to the equation y;=1—x+ error. The full data

set is included in Table 1 for easy reference.

No x Y1 Vo T; No x » %) T;
1 15 9% -135 0.41 11 7 113 -5.2 2.09
2 26 71 -26.1 2.55 12 9 96 -8.1 0.14
3 10 83 -8.7 1.13 13 10 83 -8.7 1.16
4 9 91 ~-8.8 1.90 14 11 84 -10.0 1.01
5 15 102 ~-14.5 0.40 15 11 102 -9.9 0.16
6 20 87 -186 0.24 16 10 100 -8.9 0.02
7 18 93 -17.3 0.06 17 12 105 -11.8 0.71
8 11 100 -8.9 1.68 18 42 57 -405 0.61
9 8 104 -716 0.37 19 17 121 -17.7 891

10 20 94 -19.3 0.18 20 11 86 -8.7 1.79
21 10 100 -8.6 0.19

Table 1. Adaptive score data and the values of the T;

For the bivariate regression model y; = B¢+ Byx+ error and 'yz = Bupt B pxt+error,
we consider linear constraints
301+100611=_2 and B02+100312=_100 (10)

under which we will find a mean shift outlier using the test in Section 3. First we will
check whether these linear relationships hold for the adaptive score data. The corresponding
Wilks lambda test yields the p-value = 0.972. Hence it is reasonable to assume the linear
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relationships (10) for the adaptive score data. Next the values of the T; in (8) are included in
Table 1. The maximum of the 7T, is 7T)3=_8.91 and the Bonferroni upper bound for the
p-value for the test based on max j<;<,7T; is 0.042. Hence we can conclude that observation

19 is a mean shift outlier under linear constraints (10) at any significance level greater than
or equal to 0.042.
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