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Abstract

We provide a simple chi-squared test of multivariate normality based on rectangular
cells on the spherical data. This test is simple since it is a direct extension of the
univarniate chi-squared test to multivariate case and the expected cell counts are
easily computed. We derive the limiting distribution of the chi-squared statistic via
the conditional limit theorems, We study the accuracy in finite samples of the limiting
distribution and then compare the power of our test with those of other popular tests
in an application to a real data.

Keywords . Conditional limit theorems, Geyser data, Rectangular cells.

1. Introduction

In the classical univariate chi-square test of normality, we first partition the real line into a
fixed number of intervals and calculate the frequencies of observations falling into the
intervals. We then compare the frequencies with those expected from the normal distribution
with fixed mean and variance values. If mean and variance of normal distribution are not
known in advance, we can first standardize the observation, so that the sample mean is zero
and sample covariance is one, and then test the standardized observations are from the
standard normal distribution. The boundaries of these intervals are fixed in terms of the
standardized observations but are random in terms of the original variables. Watson (1957)
considered these random intervals and derived the limiting distribution of the chi-squared test
statistic.

We can easily extend the univariate chi-squared test for normality to p-dimensional
observations. In this case, we can partition the FEuclidean space of p-dimensional real

numbers into rectangular cells, which are just products of p intervals in real line. Moore and
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Spruill (1975) derived the limiting distributions of various chi-squared test statistics based on
rectangular cells. However, expected cell counts are not easy to compute since the covariance
matrix of multivariate normal distribution is not a diagonal matrix but can be arbitrary. We
can overcome this difficulty by first spherizing the data, so that the resulting transformed
data has sample mean vector zero and sample covariance matrix identity, and then testing if
the transformed data is from the standard multivariate normal distribution. If we employ
rectangular cells as a partition of the multivariate real space, the chi-squared statistic is
essentially testing the independence of the variables of the transformed data under multivariate
normality.

This procedure is easy to comprehend since it is a direct multivariate extension of the
univariate case. This is easy to compute since all our procedures are spherizing the data and
then counting the numbers of observations falling into rectangular cells. The expected
probability that the transformed data belongs to a rectangular cell is easily computed since it
is asymptotically the product of the probabilities that each variable of a standard multivariate
normal vector belongs to the corresponding interval of the rectangular cell,

The rectangular cells on the transformed data are not rectangular in terms of the original
data and so we can not apply the Moore and Spruill’s (1975) result to derive the limiting
distribution of our chi-squared test statistic. Instead, Pollard’s (1979) result can be used to
derive its limiting distribution since it can be applied to more general data dependent cells.
However, it is not so easy to check the regularity conditions of Pollard (1979) and so we will
provide an easier way of proof based on the conditional limit theorem by Holst (1981) and
Park (1995) in deriving the limiting distribution,

In Section 2, we will explain our method more in detail and then provide main results with
proofs. In Section 3, we will provide a simulation study to check the accuracy in finite
samples of the limiting distribution and then provide an illustrative example of application to a
real data, in which we compare the power of our method with those of other popular methods.

2. Our Methods and Main Results

First, some brief remarks on notation. We will use I, ¢, and 0 to denote an identity
matrix, a column vector of ones, and a column vector or matrix of zeros respectively. The
dimensions will usually be clear from context, but will be specified by subscripts if necessary.
Unless otherwise noted vectors will be column vectors, but for convenience they will be
written in text as row vectors.

We will denote the p-dimensional multivariate distribution of mean vector & and

covariance matrix X by N,(g,2) and the chi-squared distribution with the f degrees of

freedom by x°(F). We will denote the probability density function and cumulative distribution

function of the (univariate) standard normal distribution by ¢ and @, respectively.
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We will now explain our method in more details. Let Y,,Y,,...,Y, be a random sample

from N,(y,2) with nonsingular 2. Let #=(x,2) be the parameter of the distribution and

let 8,=(0,I) be a special value of the parameter when x=0, E=1I. Then Y= Y./n
=

and S= Zl( Y;— Y)XY,— Y)!/n are the maximum likelihood estimators of @, where 't’

denotes transpose. Here we assume that #> p, so that S is nonsingular.

We first spherize the original data so that the sample mean vector is zero and the sample
covariance matrix is identity. In other words, the transformed data is obtained by

Z=RS(Y,—Y) (i=1,2,...m)
where R(S) is the lower triangular matrix with positive diagonal elements such that
R(S)SR(S)=1. The quantity R(S) is the function of the original data only through the
sample covariance matrix S. There are many other choices of R(S) that can also spherize
the original data; for example, the rotation based on the principal components and the rotation

using the square root matrix R(S)=S -1z

are two popular choices. We choose the method
based on lower triangular matrix since the ancillarity of the transformed data based on low
triangular matrix is easily verified whereas it is hard to verify for other procedures. In the
proofs of main results, we can find that the ancillarity of the transformed data is essential for
deriving the limiting distribution of the chi-squared test statistic via the conditional limit
theorems.

We next obtain a grouped data by binning the transformed data based on the rectangular
cells. In order to bin the transformed data based on the rectangular cells, we need to set the
boundaries of intervals for each coordinate (or variable) of the transformed data. Here,
different numbers of boundaries could be set for each coordinate but the boundaries must be
set such that adjacent boundaries form equiprobable intervals; l.e, when the number of
boundaries is d-+1, the boundaries are chosen as the quantiles of the standard normal
distribution corresponding to the probabilities 0/d,...,d/d and thus adjacent boundaries form

intervals with equal probability 1/d. Let d;(¢=1,...,p) be the number of equiprobable
intervals for the i-th coordinate and let &,= @ !'(p) be the p-th quantile of the standard

normal distribution. Then the intervals of the i-th coordinate are given by

(&r=-1yja.» Ewal (B=1,2,...,d;) and the k-th group will be assigned if the 7-th coordinate
of an transformed vector belongs to (& 4~1y/a,» Enal.

We now form a contingency table from the grouped data. This contingency table contains

K= lf[ld,- cells and =n observations are distributed among these K cells. We use
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r=(m, 7y, ...,7,), with 1<7,<d; for each 7, to denote a particular cell in our table. For

each cell =z, the cell count u,, is given by

Une™ 211{5(”5—”/'1:( 2y < &4y, for 1<i<p},

where I{ -} is an indicator function and z, is the i-th coordinate of the k-th transformed
vector Z,. Note that the cell count u,, is a function of the transformed data and will be

explicitly denoted by « ,.(Z,,...,Z,) whenever necessary. As a measure for the degree of

departure from multivanate normality, we use the chi-squared statistic X? defined by

(t,,— npy)*
XZ_; > npo po

y

where py=K '=( Illlla’,»)*1 is an asymptotic probability of belonging to a particular cell.
o

Note that this is the usual chi-squared test statistic for testing total independence in a
multi~way contingency table and that, under multivariate normality, the expected number of
observations in any given cell is approximately #py.

The choice of d;'s in our procedure is somewhat arbitrary. We generally prefer to have as
many cells as possible without allowing the average cell count #p, to be too small. If we
wish to use the limiting distribution of the chi-squared statistic for testing purposes, the usual
guidelines’ apply: the limiting distribution is fairly accurate when #npy;=5. Our simulation
study in next section shows that if the number of cells is large enough, it is reasonably good
even for npy;=1. Since the number of cells grows rapidly with p, for high dimensional data
sets we are often forced to use small values of d;’s in order to avoid extremely small

average cell counts.

We now present the limiting distribution of the vector of cell counts #,, and of the

chi-squared statistic X? under multivariate normality. First, we introduce various matrices
which are need in the statements of our results. Let U,=(u,,) be the Kx1 vector of cell
counts. Unless otherwise specified, the vector is a function of the transformed data and will
be explicitly denoted by U,(Z;,...,Z,) whenever necessary. For easy representation of
results, we assume the elements of the U, are arranged in such a way that the
corresponding cell vectors 7= (x|, 73, ...,7,) are in a standard order; ie. the first coordinate
m; changes form 1 to d; the fastest, the second coordinate m, changes the second fastest,

and so on.
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Now, for i=1,...,p; j=1,...,d;, define ¢;= 07 '(j/d;) and
¢'1‘j= ¢(§i(j—1))— ¢(§ij), W= §i(j~1) ¢( Cz‘(;‘—l)) ‘Zij ¢( §ij),

with the convention *oo¢(*to0)=0. We define D; to be a KXp matrix the i-th column

of which is Ii[dj repetitions of the vector (d;¢ne;, d:¢pei, ..., didie;), where e; is the
75

vector of Ii[dj ones, with the convention that Ild,: ﬂd,-El. Also we define D, to be the
e 7 J

same matrix as D, except that the ¢;'s are replaced by w;’'s. Let D; be the
Kx(p(p—1)/2) matrix obtained from D; such that the p(p—1)/2 columns of D; are all

the possible products of two distinct columns from D).

Here we will present and derive the asymptotic joint distribution of the vector U, of cell

counts and the chi-squared test statistic X° in Theorems 1 and 2, respectively.

Theorem 1. If Y}, Y,,..., Y, is a random sample from N,(z,2) where X is nonsingular,
then

n Y U,— npye) 4, Ng(0,¥) as n— o0

where

%

5 D5~ piD3D;

U= pyI—piee'— psD\Dj —

Proof: When we obtain the transformed data Z,,...,Z, by spherizing the original data
Y,,...,Y,, we use the lower triangular matrix R(S) with positive diagonal elements.
Therefore, by Theorem 1 of Park (1998), the vector U,= U(Z,,...,Z,) of cell counts are
ancillary and thus independent of a sufficient statistic ( Y, S) for 8= (y,3). Therefore, for
any &, we have

L (ULZy,....2,0)=L ¢(USZy,...,Z,))

=2 o (ULZ1r ' ZIY=0,S=D =2 o(UA Y1, ..., Y) 7=0, S=1) )

where 6,=1(0,1) is a fixed parameter. The last equality of (1) holds since, by the relation
R(D =1, the transformed vector Z;=R(S)(Y,— Y) is equal to Y; for each i, given that
Y=0,S=1 In order to apply the conditional theorem by Park(1995), we need to express the
condition { Y=0,S=1I} in terms of the canonical sufficient statistic for N,(z, £). We now

define some notations: For any p-vector y= (yl,...,yp), we define column vectors
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(0 =(y, d), ) where d» =071, ..,35), =Wy ...,¥,-1¥,). With these

notations, the canonical sufficient statistic is given by 213( Y;) and the condition
=

{Y=0,S=1I} is equivalent to {2s(X;)/n=1(0, €50x,_12)}. Therefore, the equation

(1) becomes

£ (U0, XD B YD = (0,150 o).

By applying almost the same arguments as in Theorem 2.1 of Park (1999), it is easy to verify
the assumptions of Corollary 1 of Park (1995) and thus we have
n "YU, ~npye) —L> Ng(0,A—BC'B) as n—oo,
where
A=Cov 4, (U, (Y))), B=Cov (U (Y}),s(Y1)), C=Cov4(s(Y1)).
It is easy to see that
A=pyI—piee’, B=py(Dy,Dy,D;), C=diag(l, 21, Iyi,-1y2) -
and thus
by
2

which completes proof. |

¥=A—BC 'B'= pyI—ptee'— pi DD} — 5+ D,D}— piDy D},

Theorem 2. Under the assumption of Theorem 1,
X2 —d_’ m+ g}(l"‘d,d,)%,"' g}(l—d,b,/Z)VVm'f‘ g;(l_didjaiaj)vt{lij as n—> oo

where W, is x*(K—1—2p—p(p—1)/2) distributed, {W;}, {W4;}, {W;} are x°(1)

distributed, and all of the chi-squared variates are independent with

d; ) d: )
a;= ;‘9/’:7, bi= leij,

K= I:_Ildi and ¢;'s & w;'s defined in Theorem 1.

Proof: Note that X’=(U,— npye) (U,— npye)/(npy). Therefore the limiting distribution of

X? is given by the form ﬁl/hWi where A;'s are the eigenvalues of
=

b

E=U/p,=1I—pyee’— pyD,\D}— 5

DzDé - p() DBD:';

and W.'s are a random sample from xz( 1) distribution.
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By simple algebra, we can easily show that

g‘”fi: ,2:‘"6: iﬁ’ﬁwﬁ() 2)

for each 7, where ¢ ;'s and w;'s are defined in Theorem 1. From (2), we have
e'D;=0, ¢'Dy=0, ¢'Dy=0, DiD,=0, DiD3=0, D;D;=0
and thus ee', D;D}{, D,Dj, and D;D} are orthogonal to each other.
Also from (2), it is easy to show that
e'e=K=1/py,, D\D,= diag(d,a,,...,d,a,)/p,,
and
DiD,= diag(d, by, ..., dyb,)/ by, DiDy= diag(d,d,a,a, ...,d y—1d,a ,—1a,)/ Dy .

Therefore the eigenvalues of E are 1 with multiplicity K—1—2p—p(p—1)/2,

diay, ..., d,, dia\/2,....d,a,/2, didraya,,...,d,~1dya,-1a,, and 0
with multiplicity 1. This completes the proof. ]

When our method is applied to real data, the grouped data is usually obtained by using the
same grouping rule for each coordinate of the transformed data unless some prior information
is known that some coordinates need closer examination than others. In this case, we have

d=d,=+-=d, and we can further simplify the limiting distribution of X? as follows:
Corollary 1. If d=d,=---=d, is satisfied in addition to the assumption of Theorem 1,
then

X2 —% W+ (1—da)W+ (1 —dbj) W+ (1— d2a®)W, as n— oo
where W, W, W5, and W, are independent chi-squared variates with degrees of freedom

v=K—=1=-2p—p(p—1)/2 ,vp=p, v3=p, and vy=p(p—1)/2

respectively, with a= ﬁlq/:lzj and b= ilwfj.
= 7=

Proof: If d=d,=---=d,, then we have
a=a,==a,= ]21‘1,5., b=b = =b,= lelf..
Since  {W4}, {W;}, {W,;;} are independent and x°(1) distributed, the variates

W= 33 Wa, Wi 2 Wi, and W= 2 31W,,

are chi-squared distributed with degrees of freedom p, p, and p(p— 1)/2, respectively. This
completes the proof. O
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The limiting distributions in Theorem 1 and Corollary 1 are not exact chi-squared

distributions since we use the estimators _Y S, based on the original data, for g, 5. This
have been well known since the work of Chernoff and Lehmann (1954). In order to achieve an
exact chi-squared limiting distribution, we might use the Rao-Robson chi-squared test
statistic of the form (U—npge)' ¥ ~(U~ npye) (see, Rao and Robson (1974) and Nikulin

(1973) for details) but we will not pursue this topic further in this paper.

3. Simulation and Application

We first provide a small simulation study to check accuracy in finite samples of the limiting
distribution of our chi-squared test statisticc We consider the case where d=d,=--=d,
since it will be usually employed in practice as noted just prior to Corollary 1. We have tried
many configurations but almost all of them show the identical results unless the number K

of cells is small. Therefore we present the results for the case where p=3, d=3 so that
the limiting distribution of the chi-square statistic is

22(17) +0.207 72(3) +0.279 £%(3) +0.7902%(3).

We consider four different sample sizes, n=27,54,125 and 270, which have an average of
1, 2, 5 and 10 observations per cell, respectively.

For each sample size », we generate 500 samples of size » from N;(0,I) and then
calculate the chi-squared statistics for each of them. These 500 values are plotted against the
"expected order statistics” of a sample of size 500 from the limiting distribution. The expected
order statistics are generated from the limiting distribution as follows: We generate 100
samples of size 500 from the weighted chi-squared distribution and average the order
statistics of these 100 samples. The resulting quantile-quantile plots are displayed in Figure 1.

Each plot displays the reference line with slope 1 and intercept 0, which corresponds to the
ideal case where empirical and theoretical distributions coincide. Examining the plots, we see
that the limiting distribution is a good approximation for the cases where average cell counts

npg is 2, b and 10. However the discreteness of the chi-squared values are apparent in the

case where =zp, is 1 but the points do not deviate much from the reference line even in this

case.

We next provide an illustrative example of application to geyser data, in which we compare
the power of our method with those of other popular methods. The three competitors we use
for testing multivariate normality are the skewness and kurtosis tests of Mardia (1970) and
the @, test (with Cholesky implementation) of Ozturk and Romeu (1992). We have chosen

these tests since they performed quite well in an extensive simulation study of Romeu and
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Figure 1. Quantile-quantile plots for four different sample sizes
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Ozturk (1993). There are two time series in geyser data and the waiting time between
eruptions is used for our example. We will examine the normality of the residuals from fitting
a time series model to the waiting time.

We use an automatic procedure called AR in S-Plus to select one of the best autoregressive
models based on the Akaike information criterion. By using Yule-Walker equations to estimate
the autoregression coefficients, the procedure have chosen AR(2) model. Both autocorrelation
and partial autocorrelation functions are well inside the error bars up to 25 lags and the value
of Shapiro and Wilk (1965) W test statistic is 0.9822 with p-value 0.3654. Therefore we could
not find unusual pattern by the usual time series diagnostics and a univariate test of
normality.

We now examine the residuals by our method and other competitors for multivariate
normality. To obtain multivariate observations, we divide the residuals into subseries of three
consecutive residuals and take each subseries as an observation. In this way, we obtain 99
multivariate observations. Qur method with d=3 leads to chi-squared value 33.27 with

z-score 196 and d=4 leads to chi-squared value 87.83 with z-score 2.92. Therefore, our
method signals there are some deviations from normality in the residuals. The ’‘lag 1’ plot
reveals some tendency that the variance of the residual at the present time ¢ increases with
the residual at lag 1 time f¢— 1. However, other competitors could not detect this structure:
Marida’s skewness and kurtosis have (asymptotic) p-values 0.160 and 0.569, respectively and
the test based on @, has (asymptotic) p-value 0.601. Therefore, in this example, our test has

more power for detecting deviations from normality than other tests.
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