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Abstract
In this paper, a notion of data depth is used to propose nonparametric multivariate two sample tests for

difference between scale parameters. Data depth can be used to measure the centrality or outlying-ness of the
multivariate data point relative to data cloud. A difference in the scale parameters indicates the difference in the
depth values of a multivariate data point. By observing this fact on a depth vs depth plot (DD-plot), we propose
nonparametric multivariate two sample tests for scale parameters of multivariate distributions. The p-values
of these proposed tests are obtained by using Fisher’s permutation approach. The power performance of these
proposed tests has been reported for few symmetric and skewed multivariate distributions with the existing tests.
Illustration with real-life data is also provided.
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1. Introduction

The problem of testing scale parameters of two multivariate distributions is well addressed in the
literature. The popular parametric two sample Box M-test (Box, 1949) and Fproduct test (Bibby et
al., 1979) are used if both samples come from multivariate normal distribution. In the case of non-
normality, alternative tests are used that are mostly nonparametric. Many tests have been proposed
for testing scale difference between two multivariate distributions. Some notions of data depth are
widely and currently used in statistical testing procedures. Data depth is a device that measures the
centrality or outlying-ness of a multivariate data point with respect to a multivariate distribution or a
data cloud. It produces a natural center-outward ranking of points. Many nonparametric two sample
tests for location and/or scale parameters of multivariate distributions are developed with the help of
such ranking. Liu and Singh (1993), Rousson (2002), Li et al. (2011), and Chavan and Shirke (2019)
have proposed tests for testing location as well as scale parameters of two multivariate distributions.
Many multivariate two sample nonparametric tests for location parameters are proposed by Li and
Liu (2004), Chavan and Shirke (2016), Shirke and Khorate (2017), and Pawar and Shirke (2019).
Chenouri (2004), Liu and Singh (2006), Chenouri and Small (2012), and Li and Liu (2016) also
developed multivariate two sample scale tests based on data depth.

In the present paper, we propose multivariate nonparametric two sample tests for scale parameters
using the notion of data depth. The centrality or outlying-ness of a multivariate data point is measured
by the data depth function. Difference in scale parameters exhibits a difference in the depth values.
By observing this phenomenon, two sample tests are proposed in this paper. Fisher’s permutation
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approach is used for obtaining the p-values of the proposed tests. The performance of the proposed
tests has been evaluated in terms of the power and is compared it to the existing Fproduct test and depth
based rank test.

The remaining part of the paper is ordered as follows. The notion of data depth and depth-versus-
depth plot (DD-plot) is described in Section 2. Tests proposed by Liu and Singh (2006) and Bibby
et al. (1979) for scale parameters of multivariate distributions are described in Section 3. The pro-
posed two sample tests for scale parameters are discussed in Section 4. Section 5 is devoted to the
performance study of the proposed tests and the applicability of the proposed test for real-life data is
provided in Section 6. Conclusions are given in Section 7.

2. Notion of data depth and DD-plot

2.1. Data depth

Let x0 ∈ Rp be any point then its depth with respect to the multivariate distribution F is denoted by
D(x0, F). Tukey first coined the word depth in 1975. Data depth is a mapping from p-dimensional
real space to an interval [0,∞). It measures the centrality or outlying-ness of a data point with respect
to a data cloud. Data depth gives a natural center-outward ranking of a multivariate data points with
respect to a data cloud that is utilized in various statistical methods. It includes the development of
some nonparametric tests, construction of nonparametric control charts, nonparametric classification
techniques, and outlier detection. In the context of data depth, the deepest point or points (point or
points having maximum depth) is treated as a sample median.

The current literature show several depth functions. Some of the depth functions are simplicial
depth (Liu, 1990), Mahalanobis depth (Mahalanobis, 1936), halfspace depth (Tukey, 1975), spatial
depth (Serfling, 2002), Oja depth (Oja, 1983), majority depth (Singh, 1991), and likelihood depth
(Fraiman et al., 1999). One can refer Liu et al. (1999) for detailed information. According to Zuo
and Serfling (2000), depth function should have properties such as maximality at a center, affine
invariance, vanishing at infinity and monotonicity relative to deepest point. We now review four of
these depth functions used in our simulation study.

• Simplicial depth

Simplicial depth (SD(·)) of a point x0 ∈ Rp relative to any multivariate distribution F on Rp is
defined as,

SD(x0, F) = Pr
F

(s[X1, X2, . . . , Xp+1] ∋ x0),

where X1, X2, . . . , Xp+1 are independent and identically distributed observations from F and s[X1,
X2, . . . , Xp+1] is a closed simplex whose vertices are X1, X2, . . . , Xp+1. The sample version of sim-
plicial depth is,

SD(x0, Fm) =
(

m
p + 1

)−1 ∑
∗

I(x0ϵs[Xi1, Xi2, . . . , Xip+1]),

where Fm is an empirical distribution function, (∗) runs over all possible subsets of size (p + 1)
of the sample X1, X2, . . . , Xm and I(·) is an usual indicator function. Larger the depth SD(x0, Fm)
indicates x0 is contained in more simplices generated from the sample.

• Mahalanobis depth
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Mahalanobis depth (MD(·)) of a point x0 ∈ Rp relative to any multivariate distribution F on Rp is
defined as,

MD(x0, F) =
[
1 + (x0 − θ)

′
Σ−1(x0 − θ)

]−1
,

where θ and Σ are the location parameter or center and variance covariance matrix or dispersion
matrix of F respectively. The sample version of Mahalanobis depth can be obtained by replacing θ
by X̄ (sample mean vector) and Σ by S (sample variance covariance matrix).

• Halfspace depth

Halfspace depth (HSD(·)) of a point x0 ∈ Rp relative to any multivariate distribution F on Rp is
defined as,

HSD(x0, F) = inf
H
{Pr(H) : H is a closed halfspace which contains the point x0}.

The sample version of HSD(x0, F) is obtained by replacing F by Fm.

• Spatial depth

Spatial depth (SPD(·)) of a point x0 ∈ Rp relative to any multivariate distribution F on Rp is defined
as,

SPD(x0, F) = 1 −
∣∣∣∣∣∣∣∣∣∣∫ S (x0 − X)dF(X)

∣∣∣∣∣∣∣∣∣∣ = 1 − ||E(S (x0 − X))||,

where || · || is an usual Euclidean norm in Rp and S : Rp → Rp is the multivariate spatial sign
function given by,

S (x0) =


x0

||x0||
, if x0 , 0,

0, if x0 = 0.

The sample version of SPD(x0, F) can be obtained by,

SPD(x0, Fm) = 1 −
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 1
m

m∑
i=1

S (x0 − Xi)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ .

2.2. DD-plot

Let X = {X1, X2, . . . , Xm} and Y = {Y1,Y2, . . . ,Yn} be a two data vectors of sizes m and n observed
from a two continuous multivariate distributions F and G respectively, where each Xi ∈ Rp and
Y j ∈ Rp, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Let D(z, Fm) and D(z,Gn) be the depths of a point z ∈ Z with
respect to Fm and Gn respectively, where Fm and Gn are the empirical distribution functions of F and
G andZ = X ∪Y is the combined sample of X and Y. Define

DD(Fm,Gn) = {(D(z, Fm),D(z,Gn)),∀ z ∈ Z}.

DD-plot is the plot of points in the set DD(Fm,Gn). To be specific, it is a two dimensional graph of the
depth values D(z, Fm) and D(z,Gn). DD-plot is a graphical tool used for comparing two multivariate
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Figure 1: DD-plots of F = MN2((0, 0), I2) and G = MN2((0, 0), I2). DD-plot = depth-versus-depth plot.

(a) (b)

Figure 2: DD-plots of (a) F = MN2((0, 0), I2) and G = MN2((0, 0), 0.2 ∗ I2) and (b) F = MN2((0, 0), I2) and
G = MN2((0, 0), 0.5 ∗ I2). DD-plot = depth-versus-depth plot.

samples. The points on the DD-plot are close to the diagonal line if both the samples come from the
same distribution (Figure 1). The points then fall below the diagonal line or above the diagonal line if
we assume that location parameters are same and the scale parameters of two multivariate distributions
are not the same. We observe from Figure 2 and Figure 3 that if the scale parameter corresponding
to one of the distributions F or G is large then the depth values with respect to this distribution are
also large. In this study, a ‘ddalpha’ package has been used which is available in R-software (R Core
Team, 2018).

3. Data depth based test for multivariate scale difference and FFFproduct test

Let X = {X1, X2, . . . , Xm} and Y = {Y1,Y2, . . . ,Yn} be a two data vectors of sizes m and n observed
from a continuous distribution with cumulative distribution functions F and G, respectively, where
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(a) (b)

Figure 3: DD-plots of (a) F = MN2((0, 0), I2) and G = MN2((0, 0), 1.5 ∗ I2) and (b) F = MN2((0, 0), I2) and
G = MN2((0, 0), 2.0 ∗ I2).

each Xi ∈ Rp and Y j ∈ Rp, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. We assume that F and G are identical
except for a possible scale difference. The problem is to test the null hypothesis,

H0 : F(x) = G(x), ∀x = (x1, x2, . . . , xp)T ,

against an alternative hypothesis

H1 : F(x) = G(σx) ∀x = (x1, x2, . . . , xp)T ,

where σx = (σ1x1, σ2x2, . . . , σpxp) and all elements of σ = (σ1, σ2, . . . , σp) are positive. It is
equivalent to test H0 : σ = 1 against H1 : σ , 1, where 1 is a vector of 1’s. Let Fm and Gn

denote the empirical distribution functions of F and G, respectively and D(z, Fm) and D(z,Gn) be the
depths of a point z ∈ Z with respect to Fm and Gn respectively, where Z = {Z1,Z2, . . . , Zm+n} =
{X1, X2, . . . , Xm,Y1,Y2, . . . ,Yn} is the combined sample of X and Y.

3.1. Test based on depth based center-outward rank

Liu and Singh (2006) have proposed a nonparametric test to compare the scale parameters of two
multivariate distributions using the notion of data depth. This test can be considered as a natural gen-
eralization of the Wilcoxon rank-sum test. It is based on the ranks of the depth values of observations
{Y1,Y2, . . . ,Yn} with respect to the combined sampleZ. The test statistic is defined as,

R =
n∑

j=1

rank(Y j),

where rank(Y j) = #{z ∈ Z : D(z,Z) ≤ D(Y j,Z)} and D(z,Z) is the depth of a point z with re-
spect to the combined sample Z. Larger ranks are associated with central observations and smaller
ranks are associated with extreme observations. The test rejects the null hypothesis for the smaller
value of the test statistic R. The p-value of this test is obtained using the Wilcoxon rank sum table
(Hettmansperger, 1984).
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3.2. Fproduct test

Fproduct test is used to compare the scales of two multivariate normal distributions. LetX = {X1, X2, . . . ,
Xm} andY = {Y1, Y2, . . . , Yn} be the two independent random samples of size m and n drawn from two
multivariate normal populations with means µ1 and µ2 and variance-covariance matrices Σ1 and Σ2 re-
spectively, where each Xi ∈ Rp and Y j ∈ Rp, i = 1, 2, . . . ,m, j = 1, 2, . . . , n. The notation |Σ| indicates
the determinant of the variance-covariance matrix Σ. The null hypothesis is to test H0 : |Σ1| = |Σ2|
against H1 : |Σ1| < |Σ2|. Let A1 and A2 denote the sample variance-covariance matrices obtained from
the samples X and Y respectively. The Fproduct test statistic for testing above hypothesis is,

Fprod =
(m − 1)p−1 ∏p−1

i=1 (n − i − 1)|A2|
(n − 1)p−1 ∏p−1

i=1 (m − i − 1)|A1|
.

The test statistic Fprod follows the same distribution under H0 as the distribution of V1V2 · · ·Vp, where
Vi’s are independently distributed as F-distribution with degrees of freedom (m − i, n − i). Test reject
the null hypothesis for larger values of the Fprod. That is, reject H0, if Fprod ≥ F̂α, where F̂ is the
distribution of V1V2 · · ·Vp and F̂α is an upper αth quantile of F̂. By using simulation, F̂ can be
approximated.

4. Proposed two sample tests

It is observed from the DD-plot that when the two distributions F and G are identical, the depth values
with respect to Fm and Gn of any point are approximately same. The depth values with respect to Fm

and Gn of any point are significantly different if the two distributions F and G are not identical; in
addition, the depth of any point with respect to this distribution is also large (small) if one of the
distributions F or G has a larger scale (smaller scale). By motivating this fact, we propose two test
statistics for testing scale difference based on all (m+n)2 differences between the paired depth values.
These test statistics are defined as,

• S 1 test statistic

S 1 =
∑
z∈Z

∑
z∗∈Z
|D(z, Fm) − D(z∗,Gn)| ,

• S 2 test statistic

S 2 =
∑
z∈Z

∑
z∗∈Z

(D(z, Fm) − D(z∗,Gn))2 .

Larger scale difference will lead to larger values of S 1 and S 2. Therefore, each test rejects H0
for the larger values of the test statistic. By using Fisher’s permutation approach, the p-values of the
proposed tests are obtained. Define

PS 1
B =

∑B
i=1 I

(
S ∗1i ≥ S 1obs

)
B

,

where, B is the total number of permutations of the original combined sample X∪Y , I(·) is an indicator
function, S 1obs is the observed value of the S 1 obtained from the observed combined sample and S ∗1i
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Table 1: Bivariate distributions used for the simulation study
Distribution Under H0 Under H1

Symmetric normal N2(θ = (0, 0), σ = (1, 1)) N2(θ = (0, 0), σ = (c, c))
Symmetric t t2(θ = (0, 0), σ = (1, 1), v = 10) t2(θ = (0, 0), σ = (c, c), v = 10)
Skew normal SN2(θ = (0, 0), σ = (1, 1), α = (10, 4)) SN2(θ = (0, 0), σ = (c, c), α = (10, 4))
Skew t ST2(θ = (0, 0), σ = (1, 1), α = (10, 4), v = 10) ST2(θ = (0, 0), σ = (c, c), α = (10, 4), v = 10)
Clayton ClaytonGam2((β1 = 1, λ1 = 1), (β2 = 1, λ2 = 1), ξ = 0.5) ClaytonGam2((β1 = 1, λ1 = c), (β2 = 1, λ2 = c), ξ = 0.5)
Frank FrankGam2((β1 = 1, λ1 = 1), (β2 = 1, λ2 = 1), ξ = 0.5) FrankGam2((β1 = 1, λ1 = c), (β2 = 1, λ2 = c), ξ = 0.5)
Gumbel GumbelGam2((β1 = 1, λ1 = 1), (β2 = 1, λ2 = 1), ξ = 1.5) GumbelGam2((β1 = 1, λ1 = c), (β2 = 1, λ2 = c), ξ = 1.5)

Table 2: Trivariate distributions used for the simulation study

Distribution Under H0
Symmetric normal N3(θ = (0, 0, 0), σ = (1, 1, 1))
Symmetric t t3(θ = (0, 0, 0), σ = (1, 1, 1), v = 10)
Skew normal SN3(θ = (0, 0, 0), σ = (1, 1, 1), α = (10, 4, 4))
Skew t ST3(θ = (0, 0, 0), σ = (1, 1, 1), α = (10, 4, 4), v = 10)
Clayton ClaytonGam3((β1 = 1, λ1 = 1), (β2 = 1, λ2 = 1), (β3 = 1, λ3 = 1), ξ = 0.5)
Frank FrankGam3((β1 = 1, λ1 = 1), (β2 = 1, λ2 = 1), (β3 = 1, λ3 = 1), ξ = 0.5)
Gumbel GumbelGam3((β1 = 1, λ1 = 1), (β2 = 1, λ2 = 1), (β3 = 1, λ3 = 1), ξ = 1.5)

Distribution Under H1
Symmetric normal N3(θ = (0, 0, 0), σ = (c, c, c))
Symmetric t t3(θ = (0, 0, 0), σ = (c, c, c), v = 10)
Skew normal SN3(θ = (0, 0, 0), σ = (c, c, c), α = (10, 4, 4))
Skew t ST3(θ = (0, 0, 0), σ = (c, c, c), α = (10, 4, 4), v = 10)
Clayton ClaytonGam3((β1 = 1, λ1 = c), (β2 = 1, λ2 = c), (β3 = 1, λ3 = c), ξ = 0.5)
Frank FrankGam3((β1 = 1, λ1 = c), (β2 = 1, λ2 = c), (β3 = 1, λ3 = c), ξ = 0.5)
Gumbel GumbelGam3((β1 = 1, λ1 = c), (β2 = 1, λ2 = c), (β3 = 1, λ3 = c), ξ = 1.5)

is the value of the S 1 corresponding to the ith permutation of the combined sample, i = 1, 2, . . . , B. In
a similar manner, we can also calculate the p-values PS 2

B as,

PS 2
B =

∑B
i=1 I

(
S ∗2i ≥ S 2obs

)
B

.

5. Simulation study

In this section, the performance of the proposed tests, rank test and parametric Fproduct test, in terms
of empirical power, have been evaluated for various symmetric, skewed and copula families of dis-
tributions. Table 1 list these distributions. The parameters θ, σ, v, α, and ξ respectively denote the
location parameter, scale parameter, degrees of freedom, shape parameter and parameter of the gen-
erator of copulas. The notations ClaytonGam, FrankGam, and GumbelGam represent the Clayton,
Frank and Gumbel copula sub-families of the distributions with the gamma marginals. We use the
Archimedean copula to generate random numbers from distributions. For Clayton and Frank cop-
ulas, the parameter of generator ξ is 0.5 and for Gumbel copula, ξ = 1.5. For gamma marginals,
the shape parameters (β1, β2) are equal to (1, 1) and the scale parameters (λ1, λ2) are equal to (c, c),
where c = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0. Details regarding multivariate skewed distributions are provided
in Dovoedo and Chakraborti (2015). The results are reported for various values of σ = (c, c), where
c = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0. A distribution F always corresponds to value of θ = (0, 0) and σ = (1, 1)
and the distribution G corresponds to θ = (0, 0) and any value of σ = (c, c). We have obtained the
performance for sample sizes m = n = 100 and m = n = 150. Four different depth functions namely
SD, MD, HSD, and SPD are used to calculate the depth of observation. The p-values of our proposed
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Table 3: Empirical powers of the proposed, rank and Fproduct tests for bivariate normal and bivariate t
distributions with sample size m = n = 100

Depth c
Distribution

Normal t
S 1 S 2 R Fproduct S 1 S 2 R Fproduct

Simplicial

1.0 0.063 0.066 0.059 0.054 0.052 0.053 0.051 0.102
1.2 0.180 0.170 0.204 0.340 0.156 0.147 0.179 0.379
1.4 0.506 0.481 0.420 0.770 0.415 0.392 0.369 0.714
1.6 0.787 0.758 0.631 0.953 0.702 0.674 0.586 0.903
1.8 0.930 0.915 0.797 0.992 0.872 0.858 0.751 0.977
2.0 0.986 0.980 0.886 0.999 0.953 0.943 0.858 0.997

Mahalanobis

1.0 0.044 0.046 0.038 0.041 0.050 0.053 0.049 0.096
1.2 0.235 0.235 0.195 0.359 0.157 0.157 0.158 0.371
1.4 0.614 0.601 0.404 0.755 0.455 0.454 0.369 0.709
1.6 0.884 0.877 0.628 0.944 0.726 0.725 0.579 0.903
1.8 0.981 0.981 0.800 0.995 0.891 0.888 0.747 0.976
2.0 0.997 0.996 0.898 1.000 0.966 0.967 0.859 0.997

Halfspace

1.0 0.059 0.056 0.056 0.055 0.056 0.057 0.059 0.103
1.2 0.171 0.155 0.179 0.356 0.153 0.134 0.181 0.376
1.4 0.452 0.408 0.400 0.742 0.403 0.364 0.379 0.694
1.6 0.766 0.708 0.630 0.951 0.670 0.636 0.594 0.913
1.8 0.918 0.881 0.782 0.993 0.862 0.826 0.765 0.979
2.0 0.979 0.963 0.899 0.999 0.947 0.926 0.861 0.996

Spatial

1.0 0.044 0.043 0.056 0.059 0.046 0.044 0.052 0.091
1.2 0.196 0.193 0.195 0.363 0.169 0.162 0.174 0.413
1.4 0.492 0.466 0.411 0.750 0.430 0.409 0.373 0.724
1.6 0.794 0.765 0.608 0.954 0.697 0.681 0.570 0.901
1.8 0.935 0.925 0.793 0.993 0.877 0.862 0.734 0.975
2.0 0.979 0.973 0.891 1.000 0.957 0.947 0.861 0.996

tests are determined using Fisher’s permutation principle and we used 500 permutations to calculate
p-values. The empirical power of the proposed S 1 and S 2 tests are obtained by the proportion of
p-values less than or equal to a specified level of the significance 5%. We used 1,000 simulations
to report the power. The performance of the proposed, rank and Fproduct tests is also obtained for
trivariate distributions with MD and SPD when the sample size m = n = 100. Table 2 provides details
regarding trivariate distributions.

Table 3 and Table 4 report the simulation results in terms of the empirical powers for bivariate
normal and t distributions with sample sizes m = n = 100 and m = n = 150. Table 5 and Table
6 show the empirical powers for bivariate skew normal and skew t distributions with sample sizes
m = n = 100 and m = n = 150, respectively. Table 7 and Table 8 give the empirical powers for
the copula families of distributions. Table 9 to Table 11 shows the empirical powers for trivariate
distributions when the sample size m = n = 100. The first row corresponding to depth functions in
the Table of empirical power indicates the size of the respective tests. Table 12 provides the ranking
of the S 1, S 2, and R tests with respect to empirical power for all depth functions and distributions
with the sample size m = n = 150. The lower rank in the Table indicates the better power. Table
13 shows the ranking of the depth functions with respect to empirical power for S 1, S 2, and R tests
with distributions. Table 12 and Table 13 provide information about the performance of the proposed
and rank tests under different depth functions and different distributions. We have observed the same
conclusions for the sample size m = n = 100 as that for the sample size m = n = 150. Therefore,
we have reported the conclusions for the bivariate distributions with sample size m = n = 150 and
trivariate distributions with m = n = 100 in the following.
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Table 4: Empirical powers of the proposed, rank and Fproduct tests for bivariate normal and bivariate t
distributions with sample size m = n = 150

Depth c
Distribution

Normal t
S 1 S 2 R Fproduct S 1 S 2 R Fproduct

Simplicial

1.0 0.041 0.046 0.053 0.044 0.050 0.050 0.048 0.106
1.2 0.269 0.257 0.246 0.504 0.229 0.212 0.240 0.472
1.4 0.697 0.662 0.551 0.903 0.620 0.583 0.499 0.845
1.6 0.929 0.909 0.777 0.995 0.869 0.849 0.724 0.961
1.8 0.994 0.985 0.924 1.000 0.968 0.959 0.870 0.997
2.0 1.000 0.999 0.973 1.000 0.996 0.995 0.952 1.000

Mahalanobis

1.0 0.038 0.038 0.050 0.046 0.054 0.054 0.040 0.088
1.2 0.343 0.335 0.246 0.504 0.235 0.233 0.207 0.464
1.4 0.809 0.804 0.537 0.910 0.606 0.606 0.496 0.843
1.6 0.979 0.975 0.774 0.992 0.889 0.889 0.745 0.967
1.8 0.996 0.996 0.903 1.000 0.978 0.978 0.886 0.996
2.0 1.000 1.000 0.970 1.000 0.993 0.993 0.951 0.999

Halfspace

1.0 0.054 0.056 0.055 0.048 0.051 0.049 0.046 0.096
1.2 0.255 0.227 0.247 0.505 0.215 0.195 0.216 0.465
1.4 0.658 0.598 0.544 0.907 0.556 0.514 0.486 0.830
1.6 0.914 0.875 0.791 0.996 0.847 0.809 0.739 0.973
1.8 0.984 0.972 0.919 1.000 0.964 0.946 0.896 0.997
2.0 0.999 0.994 0.973 1.000 0.987 0.984 0.955 1.000

Spatial

1.0 0.055 0.053 0.054 0.049 0.044 0.046 0.040 0.077
1.2 0.268 0.256 0.253 0.497 0.210 0.199 0.233 0.466
1.4 0.678 0.651 0.546 0.901 0.583 0.570 0.488 0.845
1.6 0.914 0.902 0.778 0.992 0.898 0.885 0.742 0.974
1.8 0.986 0.983 0.921 1.000 0.970 0.966 0.889 0.997
2.0 0.999 0.998 0.974 1.000 0.992 0.991 0.950 1.000

Table 5: Empirical powers of the proposed, rank and Fproduct tests for bivariate skew normal and bivariate skew t
distributions with sample size m = n = 100

Depth c
Distribution

Skew normal Skew t
S 1 S 2 R Fproduct S 1 S 2 R Fproduct

Simplicial

1.0 0.055 0.052 0.051 0.059 0.053 0.048 0.052 0.131
1.2 0.123 0.120 0.154 0.370 0.097 0.096 0.119 0.394
1.4 0.318 0.313 0.281 0.739 0.237 0.239 0.238 0.689
1.6 0.547 0.553 0.431 0.928 0.425 0.430 0.353 0.869
1.8 0.734 0.732 0.569 0.985 0.586 0.600 0.468 0.943
2.0 0.844 0.858 0.677 0.999 0.704 0.729 0.574 0.983

Mahalanobis

1.0 0.044 0.048 0.050 0.065 0.059 0.055 0.051 0.148
1.2 0.168 0.166 0.162 0.372 0.129 0.130 0.137 0.408
1.4 0.428 0.430 0.312 0.751 0.294 0.299 0.267 0.691
1.6 0.713 0.713 0.485 0.937 0.487 0.494 0.420 0.875
1.8 0.880 0.883 0.636 0.988 0.678 0.678 0.558 0.953
2.0 0.948 0.948 0.753 0.998 0.810 0.809 0.673 0.988

Halfspace

1.0 0.048 0.055 0.047 0.063 0.050 0.049 0.053 0.128
1.2 0.122 0.112 0.147 0.370 0.097 0.094 0.109 0.388
1.4 0.291 0.267 0.289 0.739 0.214 0.202 0.205 0.689
1.6 0.493 0.465 0.445 0.928 0.349 0.339 0.335 0.871
1.8 0.628 0.618 0.578 0.985 0.479 0.480 0.455 0.958
2.0 0.729 0.713 0.683 0.999 0.572 0.568 0.562 0.991

Spatial

1.0 0.051 0.049 0.054 0.069 0.052 0.051 0.047 0.119
1.2 0.130 0.132 0.151 0.370 0.117 0.113 0.122 0.388
1.4 0.375 0.360 0.306 0.739 0.290 0.282 0.236 0.689
1.6 0.618 0.607 0.471 0.928 0.488 0.482 0.381 0.871
1.8 0.797 0.786 0.618 0.985 0.672 0.663 0.523 0.958
2.0 0.903 0.889 0.730 0.999 0.783 0.771 0.641 0.991
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Table 6: Empirical powers of the proposed, rank and Fproduct tests for bivariate skew normal and bivariate skew t
distributions with sample size m = n = 150

Depth c
Distribution

Skew normal Skew t
S 1 S 2 R Fproduct S 1 S 2 R Fproduct

Simplicial

1.0 0.055 0.055 0.056 0.062 0.050 0.051 0.052 0.136
1.2 0.175 0.174 0.183 0.465 0.142 0.137 0.133 0.492
1.4 0.462 0.464 0.355 0.867 0.346 0.350 0.282 0.800
1.6 0.724 0.732 0.527 0.985 0.564 0.583 0.458 0.948
1.8 0.867 0.885 0.710 1.000 0.755 0.781 0.611 0.991
2.0 0.942 0.947 0.821 1.000 0.822 0.847 0.730 0.999

Mahalanobis

1.0 0.052 0.052 0.052 0.056 0.051 0.051 0.050 0.128
1.2 0.226 0.228 0.185 0.483 0.144 0.146 0.164 0.486
1.4 0.622 0.622 0.402 0.867 0.413 0.418 0.345 0.806
1.6 0.887 0.890 0.622 0.982 0.661 0.669 0.532 0.944
1.8 0.977 0.979 0.783 0.999 0.858 0.862 0.698 0.989
2.0 0.996 0.995 0.874 1.000 0.936 0.940 0.808 1.000

Halfspace

1.0 0.061 0.062 0.050 0.066 0.045 0.043 0.049 0.141
1.2 0.175 0.165 0.175 0.459 0.137 0.126 0.145 0.467
1.4 0.432 0.400 0.372 0.879 0.294 0.281 0.303 0.801
1.6 0.656 0.632 0.583 0.986 0.491 0.484 0.467 0.947
1.8 0.788 0.766 0.708 0.999 0.638 0.634 0.618 0.992
2.0 0.868 0.849 0.815 1.000 0.717 0.721 0.704 0.998

Spatial

1.0 0.043 0.043 0.054 0.063 0.049 0.053 0.050 0.130
1.2 0.187 0.184 0.186 0.466 0.153 0.156 0.161 0.472
1.4 0.533 0.527 0.393 0.872 0.416 0.408 0.318 0.800
1.6 0.808 0.798 0.603 0.985 0.667 0.662 0.526 0.950
1.8 0.935 0.922 0.761 1.000 0.834 0.823 0.675 0.987
2.0 0.979 0.973 0.872 1.000 0.922 0.920 0.798 0.998

Table 7: Empirical powers of the proposed, rank and Fproduct tests for copula families of bivariate distributions
with sample size m = n = 100

Depth c
Distribution

Clayton gamma Frank gamma Gumbel gamma
S 1 S 2 R Fproduct S 1 S 2 R Fproduct S 1 S 2 R Fproduct

Simplicial

1.0 0.056 0.058 0.061 0.215 0.056 0.055 0.051 0.193 0.045 0.044 0.050 0.208
1.2 0.100 0.112 0.115 0.676 0.106 0.108 0.086 0.669 0.103 0.113 0.112 0.670
1.4 0.234 0.266 0.207 0.938 0.209 0.264 0.140 0.947 0.248 0.284 0.206 0.934
1.6 0.382 0.460 0.297 0.994 0.313 0.425 0.218 0.995 0.395 0.475 0.299 0.995
1.8 0.488 0.591 0.385 1.000 0.365 0.529 0.267 0.999 0.506 0.622 0.405 1.000
2.0 0.533 0.664 0.457 1.000 0.364 0.582 0.323 1.000 0.555 0.694 0.492 1.000

Mahalanobis

1.0 0.046 0.047 0.048 0.207 0.052 0.056 0.058 0.188 0.059 0.059 0.046 0.211
1.2 0.116 0.130 0.125 0.679 0.133 0.134 0.118 0.669 0.132 0.144 0.158 0.668
1.4 0.378 0.384 0.255 0.933 0.378 0.378 0.210 0.928 0.398 0.425 0.317 0.939
1.6 0.683 0.674 0.388 0.992 0.665 0.655 0.315 0.994 0.692 0.715 0.476 0.993
1.8 0.871 0.849 0.509 0.999 0.853 0.829 0.429 0.999 0.878 0.890 0.609 1.000
2.0 0.947 0.933 0.603 1.000 0.942 0.917 0.524 1.000 0.955 0.958 0.717 1.000

Halfspace

1.0 0.054 0.053 0.047 0.211 0.052 0.050 0.050 0.198 0.046 0.052 0.046 0.185
1.2 0.090 0.101 0.111 0.676 0.091 0.099 0.085 0.669 0.093 0.105 0.114 0.670
1.4 0.175 0.207 0.190 0.938 0.158 0.196 0.151 0.947 0.198 0.238 0.204 0.934
1.6 0.240 0.291 0.284 0.994 0.196 0.282 0.213 0.995 0.302 0.348 0.304 0.995
1.8 0.263 0.337 0.369 1.000 0.207 0.302 0.268 0.999 0.341 0.416 0.403 1.000
2.0 0.275 0.343 0.436 1.000 0.211 0.306 0.335 1.000 0.351 0.451 0.498 1.000

Spatial

1.0 0.054 0.053 0.056 0.196 0.053 0.053 0.056 0.196 0.061 0.059 0.059 0.202
1.2 0.160 0.161 0.141 0.676 0.176 0.178 0.129 0.660 0.158 0.160 0.151 0.670
1.4 0.411 0.411 0.278 0.938 0.409 0.421 0.258 0.938 0.422 0.426 0.312 0.934
1.6 0.645 0.646 0.431 0.994 0.650 0.649 0.367 0.995 0.678 0.681 0.477 0.995
1.8 0.806 0.806 0.575 1.000 0.810 0.801 0.506 0.999 0.839 0.838 0.624 1.000
2.0 0.894 0.881 0.694 1.000 0.881 0.870 0.604 1.000 0.916 0.913 0.748 1.000
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Table 8: Empirical powers of the proposed, rank and Fproduct tests for copula families of bivariate distributions
with sample size m = n = 150

Depth c
Distribution

Clayton gamma Frank gamma Gumbel gamma
S 1 S 2 R Fproduct S 1 S 2 R Fproduct S 1 S 2 R Fproduct

Simplicial

1.0 0.057 0.055 0.052 0.200 0.049 0.048 0.052 0.214 0.052 0.052 0.056 0.193
1.2 0.131 0.144 0.137 0.752 0.108 0.131 0.121 0.775 0.137 0.154 0.137 0.774
1.4 0.318 0.395 0.251 0.988 0.254 0.342 0.206 0.987 0.309 0.378 0.267 0.983
1.6 0.493 0.586 0.411 1.000 0.326 0.476 0.308 1.000 0.478 0.582 0.418 0.998
1.8 0.550 0.678 0.504 1.000 0.341 0.552 0.394 1.000 0.542 0.680 0.532 1.000
2.0 0.554 0.704 0.605 1.000 0.277 0.536 0.451 1.000 0.579 0.751 0.637 1.000

Mahalanobis

1.0 0.049 0.051 0.048 0.212 0.061 0.060 0.054 0.203 0.054 0.053 0.056 0.212
1.2 0.199 0.209 0.177 0.792 0.187 0.203 0.159 0.765 0.181 0.214 0.198 0.774
1.4 0.573 0.573 0.335 0.981 0.567 0.579 0.296 0.981 0.542 0.591 0.381 0.977
1.6 0.878 0.866 0.483 0.999 0.890 0.865 0.438 1.000 0.860 0.874 0.602 0.999
1.8 0.966 0.962 0.644 1.000 0.976 0.965 0.587 1.000 0.970 0.972 0.761 1.000
2.0 0.997 0.991 0.752 1.000 0.994 0.989 0.684 1.000 0.998 0.996 0.857 1.000

Halfspace

1.0 0.047 0.048 0.052 0.194 0.049 0.048 0.059 0.208 0.043 0.047 0.058 0.208
1.2 0.127 0.137 0.140 0.787 0.103 0.123 0.112 0.771 0.140 0.147 0.135 0.752
1.4 0.231 0.259 0.247 0.979 0.186 0.253 0.198 0.976 0.273 0.324 0.254 0.982
1.6 0.312 0.388 0.376 1.000 0.226 0.341 0.290 0.999 0.395 0.456 0.406 1.000
1.8 0.345 0.428 0.495 1.000 0.199 0.353 0.374 1.000 0.404 0.508 0.536 1.000
2.0 0.356 0.431 0.586 1.000 0.206 0.358 0.434 1.000 0.412 0.548 0.636 1.000

Spatial

1.0 0.059 0.063 0.051 0.215 0.057 0.055 0.052 0.215 0.053 0.053 0.054 0.206
1.2 0.218 0.226 0.175 0.764 0.218 0.226 0.160 0.772 0.220 0.225 0.185 0.763
1.4 0.574 0.572 0.340 0.986 0.573 0.588 0.314 0.983 0.588 0.598 0.388 0.978
1.6 0.815 0.818 0.557 1.000 0.801 0.797 0.489 1.000 0.846 0.842 0.613 0.998
1.8 0.936 0.928 0.726 1.000 0.903 0.899 0.654 1.000 0.953 0.949 0.787 1.000
2.0 0.968 0.963 0.830 1.000 0.965 0.963 0.780 1.000 0.982 0.979 0.877 1.000

Power performance for bivariate distributions with sample size m = n = 150m = n = 150m = n = 150

The proposed S 1 and S 2 tests perform better than the rank test for all the symmetric as well as the
skewed families of distributions. In the case of a smaller scale change up to 1.2, the rank test works
better than the proposed tests for some of the distributions and depth functions. Fproduct test is more
powerful than other remaining tests for symmetric normal and skew normal distributions with all
depth functions. However, the sizes of the Fproduct test are large for all other distributions and depth
functions.

The power performance of the proposed tests and rank test for a normal distribution is better than
all other distributions. The proposed S 1 and S 2 tests have greater power for Mahalanobis depth while
for a halfspace depth, proposed S 1 and S 2 tests have less power for all the distributions. In the case
of skewed and copula families of distributions, the proposed and rank tests have greater powers for
Mahalanobis and spatial depths than the remaining depth functions. The proposed and rank tests have
larger empirical powers for skew normal distributions than skew t distributions. The depth based tests
also perform well for Gumbel distribution with most of the depth functions among all these copula
families of distributions.

Power performance for trivariate distributions with sample size m = n = 100m = n = 100m = n = 100

Table 9 shows that the Fproduct test is more powerful than remaining tests for normal distribution;
however, the proposed S 1 and S 2 tests have better power than the rank test in the case of t distribution.
The proposed and rank tests work better for Mahalanobis depth than the spatial depth. Table 10
shows that the S 1 and S 2 perform well for skew normal and skew t distributions. The rank test
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Table 9: Empirical powers of the proposed, rank and Fproduct tests for trivariate normal and trivariate t
distributions with sample size m = n = 100

Depth c
Distribution

Normal t
S 1 S 2 R Fproduct S 1 S 2 R Fproduct

Mahalanobis

1.0 0.052 0.048 0.046 0.053 0.050 0.049 0.056 0.151
1.2 0.340 0.337 0.258 0.585 0.232 0.236 0.220 0.569
1.4 0.788 0.782 0.565 0.940 0.586 0.588 0.495 0.880
1.6 0.971 0.964 0.811 0.995 0.847 0.847 0.743 0.976
1.8 0.997 0.997 0.933 1.000 0.957 0.956 0.886 0.996
2.0 1.000 1.000 0.976 1.000 0.989 0.989 0.952 1.000

Spatial

1.0 0.049 0.051 0.044 0.051 0.047 0.048 0.049 0.152
1.2 0.301 0.285 0.263 0.585 0.226 0.218 0.221 0.560
1.4 0.725 0.711 0.567 0.940 0.583 0.574 0.484 0.878
1.6 0.943 0.930 0.807 0.995 0.855 0.846 0.719 0.977
1.8 0.993 0.992 0.934 1.000 0.972 0.968 0.880 0.997
2.0 0.999 0.999 0.975 1.000 0.995 0.993 0.949 1.000

Table 10: Empirical powers of the proposed, rank and Fproduct tests for trivariate skew normal and trivariate skew
t distributions with sample size m = n = 100

Depth c
Distribution

Skew normal Skew t
S 1 S 2 R Fproduct S 1 S 2 R Fproduct

Mahalanobis

1.0 0.052 0.050 0.049 0.113 0.050 0.050 0.054 0.197
1.2 0.251 0.237 0.239 0.580 0.155 0.153 0.196 0.544
1.4 0.624 0.618 0.507 0.920 0.393 0.387 0.430 0.858
1.6 0.877 0.856 0.746 0.998 0.664 0.649 0.659 0.962
1.8 0.968 0.956 0.891 1.000 0.803 0.794 0.801 0.995
2.0 0.991 0.984 0.957 1.000 0.899 0.889 0.909 1.000

Spatial

1.0 0.047 0.043 0.051 0.097 0.056 0.057 0.051 0.178
1.2 0.239 0.230 0.220 0.588 0.178 0.179 0.185 0.561
1.4 0.621 0.603 0.499 0.929 0.474 0.466 0.422 0.844
1.6 0.890 0.878 0.747 0.996 0.726 0.714 0.626 0.958
1.8 0.977 0.972 0.890 1.000 0.899 0.889 0.804 0.995
2.0 0.998 0.996 0.960 1.000 0.969 0.963 0.899 1.000

gives comparable power to the proposed tests for the Mahalanobis depth. Power performance for the
Mahalanobis and spatial depth works equally well. By observing Table 9 and Table 10, proposed and
rank tests have better power for normal distribution than the remaining distributions with Mahalanobis
depth and spatial depth.

Table 11 shows that the rank test performs well for copula families of distribution with Maha-
lanobis depth; however, the proposed tests are more powerful than the rank test in the case of spatial
depth. The proposed tests have better power for spatial depth than the Mahalanobis depth. Also, the
power performance of the proposed and rank tests also works well for the Gumbel copula than the
Clayton and Frank copula.

It is seen that the proposed S 1 and S 2 tests perform relatively well than the rank test. S 1 and S 2
tests consider all the pairwise differences between the depth values of two multivariate distributions
since the difference in scale parameters indicate a difference in the depth values. Therefore, S 1 and
S 2 tests capture the variation between the depth values. The empirical power of the discussed tests
increases and the size of these tests is close to the significance level of 5% as the sample size increases
from m = n = 100 to m = n = 150.
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Table 11: Empirical powers of the proposed, rank and Fproduct tests for copula families of trivariate distributions
with sample size m = n = 100

Depth c
Distribution

Clayton gamma Frank gamma Gumbel gamma
S 1 S 2 R Fproduct S 1 S 2 R Fproduct S 1 S 2 R Fproduct

Mahalanobis

1.0 0.060 0.060 0.048 0.249 0.060 0.060 0.051 0.246 0.055 0.055 0.054 0.253
1.2 0.122 0.123 0.204 0.806 0.124 0.128 0.206 0.826 0.173 0.173 0.284 0.802
1.4 0.319 0.317 0.483 0.986 0.288 0.277 0.458 0.991 0.461 0.446 0.617 0.991
1.6 0.518 0.467 0.694 1.000 0.464 0.392 0.680 0.999 0.730 0.685 0.831 0.999
1.8 0.652 0.554 0.850 1.000 0.598 0.474 0.833 1.000 0.881 0.830 0.952 1.000
2.0 0.737 0.593 0.931 1.000 0.656 0.502 0.924 1.000 0.945 0.889 0.989 1.000

Spatial

1.0 0.058 0.061 0.053 0.257 0.048 0.049 0.054 0.233 0.052 0.049 0.054 0.255
1.2 0.237 0.233 0.216 0.828 0.220 0.215 0.186 0.819 0.267 0.262 0.271 0.806
1.4 0.628 0.613 0.499 0.990 0.583 0.569 0.430 0.987 0.658 0.648 0.585 0.988
1.6 0.880 0.857 0.715 1.000 0.833 0.810 0.660 1.000 0.910 0.897 0.828 1.000
1.8 0.962 0.949 0.872 1.000 0.950 0.925 0.854 1.000 0.979 0.975 0.930 1.000
2.0 0.992 0.985 0.939 1.000 0.981 0.963 0.923 1.000 0.997 0.995 0.985 1.000

Table 12: Ranking of the S 1, S 2, and R tests for all depths and distributions with sample size m = n = 150

Depth
Distribution

Normal t Skew normal Skew t Clayton gamma Frank gamma Gumbel gamma
S 1 S 2 R S 1 S 2 R S 1 S 2 R S 1 S 2 R S 1 S 2 R S 1 S 2 R S 1 S 2 R

SD 1 2 3 1 2 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3
MD 1 2 3 1 2 3 2 1 3 2 1 3 1 2 3 1 2 3 2 1 3
HSD 1 2 3 1 2 3 1 2 3 1 2 3 3 2 1 3 1 2 2 1 3
SPD 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

SD = simplicial depth; MD =Mahalanobis depth; HSD = Halfspace depth; SPD = Spatial depth.

Table 13: Ranking of the SD, MD, HSD, and SPD for all tests and distributions with sample size m = n = 150

Depth
Distribution

Normal t Skew normal Skew t Clayton gamma Frank gamma Gumbel gamma
S 1 S 2 R S 1 S 2 R S 1 S 2 R S 1 S 2 R S 1 S 2 R S 1 S 2 R S 1 S 2 R

SD 2 2 2 2 2 1 3 3 4 3 3 4 3 3 3 3 3 3 3 3 3
MD 1 1 1 1 1 4 1 1 1 1 1 1 1 1 2 1 1 2 1 1 2
HSD 4 4 3 4 4 1 4 4 3 4 4 3 4 4 4 4 4 4 4 4 4
SPD 3 3 4 3 3 3 2 2 2 1 2 2 2 2 1 2 1 1 1 1 1

SD = simplicial depth; MD =Mahalanobis depth; HSD = Halfspace depth; SPD = Spatial depth.

6. Application to real-life data

In this section, the applicability of the proposed tests is verified through real-life data. We analyzed the
dataset used by Jolicoeur and Mosimann (1960) for further evaluation of the proposed tests. Jolicoeur
and Mosimann (1960) studied this dataset for evaluating the applicability of the principal component
analysis to size and shape variation in groups of female and male turtles. This dataset contains three
measurements in millimeter on the three characteristics namely carapace length, carapace width and
carapace height of 48 turtles. Out of 48 turtles, 24 are female turtles and the remaining 24 are male
turtles. These are two populations (F and G) corresponding to female and male turtles respectively.

We are interested in testing the scale difference between these two populations. For female and
male turtle populations, the multivariate Shapiro test for normality gives p-value 0.1626 and 0.01551
respectively. Therefore, tests based on the assumption of multivariate normality are not appropriate
in this case. We construct the DD-plot (Figure 4(a)) for this data using Mahalanobis depth function.
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(a) (b)

Figure 4: DD-plot for the real life data (a) before centering data and (b) after centering data.

Table 14: p-values of the proposed and rank tests

Test S 1 S 2 R
p-value 0.00125 0.00111 0.00172

We first center the data to have the same location at their respective deepest points since the DD-plot
indicates location differences between the female and male turtle populations. This can be done by
subtracting the deepest point from each data point in the dataset. After centering, the DD-plot (Figure
4(b)) for the same shows the male turtle population has a larger scale than the female turtle population.
We also use proposed tests to evaluate if there is a difference in the scale parameters of the distribution
of female and male turtles. Table 14 provides the p-values for the proposed and rank tests based on
B = 100000 permutations as well as shows that all the p-values are very small. This indicates that
female and male turtle populations do not have the same scale parameters.

7. Conclusion

A notion of data depth is used for testing scale parameters of the two multivariate distributions. The
proposed tests are nonparametric in nature. The tests are based on all possible pairwise differences
between the depth values. The power performance of the proposed tests is conducted for a few sym-
metric and skewed multivariate distributions along with four depth functions. Power performance is
also reported for the large sample size 150 and a higher dimension. The simulation study reveals that
the proposed tests work better than the existing depth based test for symmetric as well as skewed mul-
tivariate distributions; however, the parametric Fproduct test does not cope well for some non-normal
distributions. In addition, the proposed and rank tests perform well for copula families of distribu-
tions. A notion of data depth is most commonly used in recent years for nonparametric multivariate
analysis. A center-outward ranking produced by data depth is used in various statistical methods such
as nonparametric multivariate testing procedures, designing multivariate control charts, and building
a multivariate regression model.
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