• Title/Summary/Keyword: multivariable control

Search Result 277, Processing Time 0.034 seconds

Self-Tuning Control of Multivariable System (다변수 시스템의 자기동조제어)

  • Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.69-78
    • /
    • 1999
  • In the single-input and single-output system, the parameter of plant is scalar polynomial, but in the multiple input and multiple output, it accompanies, being matrix polynomial, the consideration of observable controlability index or problems non-commutation in matrix polynomial as well as degree, and it is more complex to deal with. Therefore, it is thought that a full research on the single-input and single-output system is not sufficient. This paper proposes that problems of minimum variance self-tuning regulator by using numerical calculation example of multivariable system and pole assignment self-tuning regulator.

  • PDF

THE ROBUST CONTROLLER DESIGN FOR UNCERTAIN MULTIVARIABLE SYSTEM USING SWITCHING DYNAMICS

  • Park, Gwi-Tae;Kuo, Chun-Ping;Kim, Dong-Sik;Lim, Sung-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.924-930
    • /
    • 1989
  • This paper presents the design of simple robust controller for a class of uncertain multivariable systems. We introduce switching dynamics instead of switching logics unlike variable structure control scheme. Also, we can construct the continuous control law from this switching dynamics and consequently remove the chattering motion. The dynamic equations of the range-space of a switching surface matrix C and uniform ultimate boundedness in the presence of parameter uncertainties are described mathematically.

  • PDF

LMI-Based Robust Controllers for DC-DC Cascade Boost Converters

  • Torres-Pinzon, Carlos Andres;Giral, Roberto;Leyva, Ramon
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.538-547
    • /
    • 2012
  • This paper presents two different robust controllers for boost converters with two stages in a cascade. The first robust controller is monovariable; that is, the duty-cycle is the same for the two switches. The monovariable controller ensures that some prescribed constraints on pole placement and control effort are met, and optimizes the load disturbance rejection, while takes into account the uncertainty in certain parameters. The first controller is then compared with a multivariable robust controller; that is, with independent duty cycles in each switch. The multivariable controller takes into account the same uncertainty, constraints and optimization function. The comparison shows that the multivariable controller performs better at the expense of a slightly more complex implementation; that is, the multivariable controller provides a better rejection of the load disturbance. The paper also describes simulations and experimental results that are in perfect agreement with theoretical derivations.

Constrained multivariable model based predictive control application to nonlinear boiler system (제약조건을 갖는 다변수 모델 예측 제어기의 비선형 보일러 시스템에 대한 적용)

  • 손원기;이명의;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.160-163
    • /
    • 1996
  • This paper deals with MCMBPC(Multivariable Constrained Model Based Predictive Controller) for nonlinear boiler system with noise and disturbance. MCMBPC is designed by linear state space model obtained from some operating point of nonlinear boiler system and Kalman filter is used to estimate the state with noise and disturbance. The solution of optimization of the cost function constrained on input and/or output variables is achieved using quadratic programming, viz. singular value decomposition (SVD). The controller designed is shown to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

On the loop-shaping techniques for the LQG/LTR control (LQG/LTR 제어를 위한 루프형성기법에 관한 연구)

  • 한성익;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1028-1033
    • /
    • 1992
  • Loop shaping techniques are developed for the LQG/LTR controller design of singular multivariable sytems. One approach is to use the mode form of plant and the other is to replace the eigenvalues at 0 by ones at .epsilon.(.rarw.0). These two concepts for the target filter loop design are applied to a flight autopilot. And it is shown that these techniques are effective ones for the desired loop-shaping of singular multivariable systems.

  • PDF

On the zeros of a multivariable discrete-time control system with approximate fractional order hold

  • Han, Seong-Ho;Yoshihiro, Takita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.2-47
    • /
    • 2001
  • This paper is concerned with the limiting zeros, as the sampling period tends to zero, of a multivariable discrete-time system composed of an approximate fractional-order hold (AFROH), a continuous-time plant and a sampler in cascade. An approximate fractional-order hold is proposed to implement fractional-order hold (FROH) and is applied to instead of the zero-order hold (ZOH). The implementing problem of the fractional-order hold is overcome. The properties of the limiting zeros are studied and the location problem of them is solved. In addition, a stability condition of the zeros for sufficiently small sampling period is derived ...

  • PDF

A Multivariable Control design using Quantitative Feedback Theory (QFT를 이용한 다변수시스템의 제어기 설계)

  • Choi, Yong-Hee;Jung, Jae-Yun;Park, Yong-Sik;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.475-478
    • /
    • 1999
  • In this paper, we propose the robust performance design of multivariable systems within the framework of Quantitative Feedback Theory(QFT) using ICD. The ICD(Individual Channel Design) is a multivariable control method based on the classical frequence response. It is considered to apply feedforward controller for compensating the effect of interconnection between channels. Performance of the proposed method are demonstrated by simulations in appling gas turbine model.

  • PDF

Analytical Design of Multiloop PI Controller for Disturbance Rejection in Multivariable Processes (다변수 공정에서의 외란제거를 위한 다중루프 PI 제어기의 해석적 설계)

  • Vu Truong Nguyen Luan;Lee Ji-Tae;Lee Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.505-508
    • /
    • 2006
  • This paper presents a new analytical approach for designing multiloop PI controllers for disturbance rejection in multivariable processes with time delay. The proposed method is based on IMC-PID design approach. To overcome a sluggish load response by dominant pole in the process, the IMC filter is modified to compensate the dominant pole effect. Based on the modified IMC filter, an analytical tuning rule for multiloop PI controller is driven by extending the generalized IMC-PID method for single input/single output (SISO) systems [1] to multi input/multi output (MIMO) systems. Simulation results show that the proposed method gives a satisfactory load performance as well as servo performance in the multiloop system.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.212-218
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.