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This paper presents two different robust controllers for boost converters with two stages in a cascade. The first robust controller is 

monovariable; that is, the duty-cycle is the same for the two switches. The monovariable controller ensures that some prescribed 
constraints on pole placement and control effort are met, and optimizes the load disturbance rejection, while takes into account the 
uncertainty in certain parameters. The first controller is then compared with a multivariable robust controller; that is, with 
independent duty cycles in each switch. The multivariable controller takes into account the same uncertainty, constraints and 
optimization function. The comparison shows that the multivariable controller performs better at the expense of a slightly more 
complex implementation; that is, the multivariable controller provides a better rejection of the load disturbance. The paper also 
describes simulations and experimental results that are in perfect agreement with theoretical derivations. 
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I. INTRODUCTION 
Basic DC-DC converters have practical limitations for 

voltage conversion when the ratio between the output voltage 
and the input voltage is too high or too low [1]. This is the 
reason why we use other topologies when a wide conversion 
ratio is required. An alternative for wide voltage conversion are 
converters with transformer like the reported in [14]. 
Nevertheless, using transformers could involve dangerous 
voltage spikes that limit the efficiency and causes undesirable 
noise [15], [16]. When non-isolation is required an efficient 
alternative to the basic topologies are cascade topologies. An 
example of cascade topology is the cascade buck converter 
where the conversion ratio is the product of the duty-cycle of 
each stage. The cascade buck converter is a good choice to 
wide-range voltage reductions, as for instance in present 
microprocessors, which need to be fed with a very low voltage 
between 3.3 V and 1.5 V [2]. Another example of cascade 
topologies is the cascade boost converter that is used when a 

large voltage step-up is required, for example, in certain 
renewable energy applications where the voltage of the 
renewable source is very low and the required output voltage is 
high [3], [13]. 

The cascade converters have multiple stages that are driven 
by their respective duty cycles. Therefore, cascade converters 
are inherently multivariable systems. However, in order to 
simplify the controller implementation, most of the authors 
report controllers for these systems where duty-cycles are equal 
for all of the stages [1], [2], [8]; thus the system becomes 
monovariable. 

Control based on linear matrix inequalities (LMI) provides a 
solution that ensures to comply with a great number of design 
requirements where classical techniques fail to obtain an 
analytical solution [4]. LMI control technique does not provide 
an analytical solution but a numerical one that is achieved 
using modern numerical optimization methods to ensure the 
control constraints and thus to find the controller gains. 

This fact has prompted some authors to apply LMI control in 
the dc-dc converter field [6], [7], [17], [18]. This technique 
allows us to ensure the satisfaction of requirements on stability, 
closed-loop pole placement and control effort and, 
simultaneously, to maximize the level of disturbance rejection. 
In [6], [7], Olalla et alt. analyze LMI controllers for boost 
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converters optimizing the load disturbance rejection and 
describe their implementation. In [17], Montagner analyzes 
LMI controllers where the parameters depend on measurable 
converter parameters. In all the previous contributions the 
converter has a single stage, thus the control is monovariable. 
Unlike the previous works, we present an LMI controller 
which is multivariable for cascade converters and compare it 
with a monovariable alternative. We verify that the 
multivariable alternative performs better, whereas the design 
procedure involves a similar optimization program and the 
controller implementation is only slightly more complex. 

The paper is organized as follows, Section II reviews the 
modeling of the boost converter with two stages in a cascade 
when the duty cycles of the two switches are equal and when 
they are independent. The modeling takes into account the 
uncertainty in converter parameters. Section III describes the 
LMI design requirements used in the control design; that is, the 
maximum level of disturbance rejection, the pole placement 
restriction and the bounding in control effort. In Section IV, the 
control procedure is explained and some simulations are 
provided. The experimental verifications are shown in section 
V. Finally, section VI summarizes the main conclusions. 

 

II. DC-DC CASCADE BOOST CONVERTER MODEL  
 

This section presents the averaged dynamic model of the 
cascade boost converter and describes the uncertainty of the 
converter parameters by means of a polytopic representation. 

 
A. Averaged Model of Cascade Boost Converters 

Fig. 1 shows the schematic of a boost converter with two 
stages in cascade, where Vg is the input voltage, io is the load 
current disturbance, and vo1 and vo2 are the capacitor voltages. R 
models the converter nominal load, while L1, L2, C1, and C2 

stand for the inductances and capacitances values, respectively. 
The state variables are the inductor currents iL1 and iL2 and the 
capacitor voltages vo1 and vo2; thus the state vector corresponds 
to 1 1 2 2( ) ( ) ( ) ( ) ( )L o L ox t i t v t i t v t=    . 

The binary signals u1 and u2 turn the MOSFETs ON and 
OFF at a constant switching frequency 1/ sT . 

1 1
  and  on offT T are the time intervals at which the switch Q1 

remains ON 1( 1)u =  and OFF 1( 0)u = , respectively. We 
use the same convention for 

2 22 2  ( 1) and   ( 0) on offT u T u= = of switch Q2. The 

switching period holds that 
1 1 22=  s on off on offT T T T T= + +  and 

we have synchronized the beginning of both ON intervals 

1 2
  and  on onT T . The ratios 

11 /on sd T T=  and 
22 /on sd T T=  

are the duty cycles of the first and second switch, respectively. 
We assume that the converter operates in continuous 
conduction mode. 

The dynamic behavior of the cascade boost converter at each 
position of the switches can be obtained by using the 
Kirchhoff’s laws. Thus, the dynamic expressions in state-space 
at each position of the switch set is characterized as, 

 

1 1 1, 2

2 2 1, 2

3 3 1, 2

4 4 1, 2

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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x t A x t B during T T
x t A x t B during T T
x t A x t B during T T
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= +






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 (1) 

where Ai and Bi (i ∈  {1, 2, 3, 4}) are the state matrices and 
the input vector, respectively, for each subinterval. Also, x  is 
the state vector which groups the inductor currents and 

capacitor voltages [ ]TLoL vivix 02211= . 

Thus, expression (1) can be compacted in the following 
manner, 
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Therefore, the converter dynamics can be written as  
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This switched model can be approximated by using the 
state-space averaging model [5], [9], which is obtained by 
replacing the binary signals u1 and u2 by their duty cycles d1 
and d2, and the state vector by their corresponding averaged 
values during the switching period. 

 

1) Monovariable linearized averaged model: We consider a 
single duty cycle, that is 1 2d d d= = , and a single output 
signal 2 ( )ov t  that corresponds with the output capacitor 
voltage, in the monovariable model. We also consider an 
additional state variable 5x  to take into account the integral 

of the output voltage error ( )5 2
0

( )  
t

o refx v V dτ τ= −∫ , to ensure 

a zero output error in steady state. Consequently, 

 
Fig. 1. Schematic circuit of a cascade boost converter. 
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2
2 /o ref gv V V D′= =  in equilibrium, where DD −= 1' is the 

switches complementary steady-state duty cycle . We also 
consider a disturbance signal corresponding to an additional 
output current oi . Therefore, the augmented averaged model 
of the monovariable cascade boost converter can be written 
as 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

mono mono mono
w d

mono mono mono
z zw zd

x t A x t B w t B d t

z t C x t D w t D d t

= + +

= + +
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  



 

 (4) 

where x , d , and w  are the averaged values of the state 
vector, duty cycle and disturbance in incremental form; that is, 

sT
x x X= − , 

sT
d d D= − , ow i= , being 
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and the equilibrium state vector expression 
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In the following subsections, we consider as uncertain values 
the load R  and the steady-state complementary duty cycle 

'D , hence matrices monoA  and mono
uB  are uncertain. 

 

2) Multivariable linearized averaged model: In the 
multivariable model, we consider a multiple input; that is, the 

input vector corresponds to 1 2

T
d d d =  
   and we take as 

output vector the voltages in capacitors [ ]1 2
T

o oz v v=   , 

where 1 1 2
ref

o o

V
v v= −  and 2 2o o refv v V= − . In order to ensure 

zero steady-state output errors we add two new additional 

variables ( )5 2
0

( )  
t

o refx v V dτ τ= −∫  and ( )6 2
0

( )  
t

o refx v V dτ τ= −∫ . 

Thus, the augmented averaged model of the multivariable 
cascade boost converter can be derived from (3) as, 
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being 
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and the multivariable equilibrium state vector  
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In the multivariable model, we consider as uncertain values 
the load R  and the steady-state complementary 

duty-cycle 1'D , hence matrices multiA  and multi
uB  are 

uncertain. It is worth to note that since 1 2
ref

o

V
v =  and 

2o refv V=  in steady state, 5.0'2 =D  does not depend on the 

value of the input voltage gV , therefore there is no uncertainty 

in  parameter 2'D . 

 
B. Uncertain Polytopic Representation of the Cascade 
Boost Converter 

Since some converter parameters are uncertain, some terms 
of dynamic expressions (4) and (7) are only known inside a 
certain interval. Thus, in order to ensure that the control 
requirements are met for any value of the parameters, we 
define a vector ρ  which groups the uncertain terms such that 
the matrices A  and B  have a linear dependence on these ρ  
parameters. Then we define a convex polytope that contains all 
the possible values of dynamic matrices ( )A ρ  and ( )B ρ . 

 
1) Uncertain polytope in monovariable model: Since the 
uncertain converter parameters are R  and 'D  in this 
model, a ρ  vector such as that groups the terms 

2
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( )A ρ  and ( )dB ρ on ρ . 

Therefore, the possible values of ρ  are hold within a 

polytope of 42L = vertices { }1 16,...,v v such that its coordinates 

are bounded by 

1 1min 1max
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The convex polytope that contains all the possible values of 
ρ  can be expressed as the following convex combination [4] 
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And, because of the linear dependence on ρ , the system 
matrices ( )A ρ  and ( )dB ρ  are contained in the following 
convex polytope 
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where the vertex iς  corresponds to the image of iv , that is 

( ), ( )i i iA v B vς =    . Thus using the concept differential inclusion 

[4], we ensure the fulfillment of control requirements for the 
whole family of system matrices ( )( ), dA Bρ ρ   . 

It is worth to note that, despite this model has two uncertain 
parameters, the vector ρ  has four dimensions so that the 
system matrices is linearly dependent on ρ . This procedure 
involves some degree of conservatism but it will ensure the 
robustness of the control. 

 
2) Uncertain polytope in multivariable model: The uncertain 
converter parameters in the multivariable model are R and 
D’1, and the chosen ρ  vector for a linear dependence 

groups the terms '
1 '

1

1 1, ,
 

D
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Consequently, the possible values of ρ  are hold within a 

polytope of 32 vertices { }1 8,...,v v such that its coordinates are 

inside the intervals 
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Therefore the system matrices ( )A ρ  and ( )B ρ  of the 
multivariable model are contained inside the corresponding 
convex polytope. 

In next section, we apply the control requirements to the 

previous uncertain models. 
 

III. LMI DESIGN CONSTRAINTS 
A. Introduction 

In this subsection, we revisit some concepts of LMI control 
that are next applied to cascade boost converters. 

LMI has being used in control for a long time, a classical 
control theorem establishes that the system 

 ( )  ( )x t A x t=

   (14) 

is stable i.e., all the trajectories converge to zero, quadratically 
stable in Lyapunov sense, if and only if there exists a 
positive-definite matrix P  (i.e., 0P > ), such that 

 0<+ PAPAT  (15)  

Therefore the stability requirement has become a problem of 
solving a linear matrix inequality whose variable is P . Here > 
means positive definite and < means negative definite. It is 
worth to note that we have removed the superindex mono or 
multi since we can consider any of the previous models. 

This concept can be extended to a family of systems defined 
by a polytopic representation, thus ensuring the robust stability 
despite of the particular value of the system matrices. That is, 
let the family of systems 
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   (16) 

where ρ  is an unknown parameter of A , assuming that 
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iA , that is, { }1( ) ,...,o LA C A Aρ ∈  or equivalently, ( )A ρ  can 

be expressed as a convex combination of iA  

 ∑ ∑
= =

=≥=
L

i

L

i
iiii AA

1 1

1,0,)( λλλρ  (17) 
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 0)()( <+ ρρ APPAT  (18)  

The previous expression can be rewritten as 
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Therefore, if there exists a symmetric matrix 0P >  that 
meets quadratic stability in each vertex 
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the system is stable with independence of the unknown value 
of ρ . 

This concept can also be extended to feedback controlled 
systems, in the following manner. Given the system  

 ( )  ( )  ( )dx t A x t B d t= + 

   (22) 

where ( )d t is the input signal and we assume a linear feedback 

law ( )  ( )d t F x t=

 , then the closed-loop system is stable if 
there exists a 0P >  such that  
 

 ( ) ( ) 0<+++ FBAPPFBA d
T

d  (23) 
 

Nevertheless, when P and F are variables of expression 
(23), the inequality is nonlinear. However, it can be rewritten 
as 

 

    0T T
d dA W W A B Y Y B+ + + <  (24) 

 

where 1W P−= , Y is defined so that 1 F Y W −= , and thus, 
expression (24) is an LMI. Hence, we can obtain all the 
feedback gain vectors F that stabilize the system (22) by 
finding all W and Y that fulfill (24). 

The stability constraint can be extended to a family of 
systems ( ), ( )dA Bρ ρ    imposing the restriction (24) to each 

vertex ,i diA B   . 

Other restrictions can be imposed on the feedback gain 
vector F to ensure, in addition to stability, an appropriate 
dynamic behavior in closed-loop. These restrictions are studied 
in the following subsection. 

 
B. LMI Constraints on Design Requirements 

We analyze the H∞ performance, the pole placement and the 
control effort as requirements that should be imposed in the 
controller design. 

 
1) LMI Formulation for H Control Design H∞: We consider 
that the feedback controlled system (24) with a linear 
feedback ( )  ( )d t F x t=

  is affected by a disturbance signal 
( )w t , that is 
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We desire to impose restrictions on the controller gain vector 
F such that the energy gain of the output ( )z t  is not larger 

than a certain value γ , that is 

 222
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This is equivalent to the next restriction in the frequency 
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 γω

ω
<)(max jG  (27) 
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This means that any frequency of the disturbance signal will 
not be amplified more that γ . 

Conditions (26) and (27) correspond with the H∞ norm of 

the transfer function G . The restriction is met if there exists a 

Lyapunov function ( ) TV x x Px= that comply with the 
following inequality [4] 
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where 1−= PW  and Y=FW. 
This result is readily extended to uncertain systems with a 

polytopic representation [7], [11]. 
 
2) LMI Formulation for pole-placement: Another important 
constraint to be imposed to a family of systems dynamics is 
the pole placement. We desire that the closed-loop poles are 
inside a prescribed [11], [7]. This region ensures a minimum 
decay rate α, a minimum damping ratio )sin(θζ =  and a 
maximum natural frequency r=0ω . Thus, this region 
bounds the maximum overshoot, the rising time and the 
settling time. 

The constraint of decay rate is imposed by means of the 
following LMI,  

       02 <++++ WBYYBWAWA uu
T α      (30) 

The damping ratio is limited by the LMI 
( ) ( )
( ) ( )

cos( ) sin( )
0

sin( ) cos( )

T T T T T T
u u u u

T T T T T T
u u u u

AW WA B Y Y B AW WA B Y Y B

AW WA B Y Y B AW WA B Y Y B

θ θ

θ θ

 + + + − + −
  <
 − + − + + + + 

(31) 

In addition, bounds on the natural frequency involve another 
LMI 

 0<












−+
+−
rWYBAW

BYWArW

u

T
u

TT
      (32) 

A detailed explanation about the previous LMIs and their 
extension to a family of systems can be found in [11]. 

 
3) LMI Formulation for constraint on control input: A control 
fulfilling with all the previous restrictions but presenting an 
excessive gain F  would be affected by the duty-cycle 
saturation, which would worsen the expected performances. 
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Thus, we bound the control effort ( )d t µ≤  along the 

trajectory for any initial condition (0)x  inside the ellipsoid 

(0) (0)Tx Px   by means of the following additional LMIs 

 0,0
)0(

)0(1
2 <











<













IY
YW

Wx
x TT

µ
     (33) 

where again 1−= PW  and Y=FW. 
The previous design LMI are used to obtain robust, efficient 

control laws in next section where we instantiate the 
parameters that correspond to the experimental prototype. 

 

IV. CONTROL DESIGN AND SIMULATION RESULTS 
In this section, we describe the LMI control procedure 

applied to both the monovariable model of the cascade boost 
converter (4) and the multivariable model (7), taking into 
account their corresponding polytopic uncertainties (10) and 
(13), respectively. 

The procedure consists of finding the feedback gain F  
such that the current disturbance rejection is maximized, that is 
minimizing the parameter γ  in the LMI (29). The 
minimization is subject to constraints on stability, which 
corresponds with LMI (24), on pole placement (30)-(32), and 
on control effort LMIs (33), for each vertex of the polytopic 
representation of the model. We chose as control parameters 
those of table I. The converter parameters are shown in table II. 
Thus, the control design procedure can be expressed by means 
of the following optimization program 

  { }i,
min subject to (28)- (32) , 1, ,
Y W

i Lγ ς∀ =       (34) 

The optimization program (34) is convex and can be readily 
solved by standard interior-point methods using Matlab [12]. 
Using this procedure ensures that either the optimum is rapidly 
achieved or the infeasibility is promptly detected. 

For the monovariable case, the optimal feedback gain vector 
corresponds to 

[ ]var 0.1359 0.1760 0.0661 0.1359 64.8178mono iableF = − − − −

                   (35) 
This controller ensures a H∞  gain of the output 

voltage with respect to the output current disturbance of 
3.51γ =  (10.9 dB)   

The optimal feedback gain in the multivariable converter 
model corresponds to 

multivariable

0.1893 0.0540 0.0218 0.1611 12.5137 108.4642
0.0355 0.0411 0.0714 0.0272 51.9310 8.2799

F
− − − − − − 

=  − 
   (36) 

The H∞  gain of the output voltage with respect to the 
output current disturbance of this controller is 2.31γ =  
(7.2 dB) . 

TABLE I 

CONTROLLERS PARAMETERS 

θ 
α 
μ 

r  

25º 
300 s

10
2 sfπ

-1 
15 

rad/s 

 
TABLE II 

CASCADE BOOST CONVERTER PARAMETERS 

Vg 
Vref 
C1, C2 
L1, L2 
R 
D’1, D’ 

sf  

10 V 
40 V 
110 μF 
150 μH 
[10, 50] Ω 
[0.4, 0.6] 
120 kHz 

 

 
Fig. 2. Simulated response of the monovariable cascade boost 
converter under a load step transient of 0.5 A.  

 
Fig. 3. Simulated response of the multivariable cascade boost 
converter under a load step transient of 0.5 A. 

 
These values of H∞  gain, show a better performance of 

the multivariable approach. This behavior is corroborated by 
PSIM simulations. Also, it can be appreciated that the settling 
time is smaller than 13.3 ms as expected since the minimum 
decay rate is α = 300. As we have chosen 25�θ =  according 
to table I, the minimum damping ratio expected is 0.42ζ = . 
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Fig. 4. Simulated response of the monovariable cascade boost 
converter for step perturbations in the input voltage. 

 
Fig. 5. Simulated response of the multivariable cascade boost 
converter for step perturbations in the input voltage. 

 
Fig. 2 depicts waveforms of the output current oi  and 

voltages 1ov and 2ov  of the monovariable converter 
controlled by feedback gain (35). The waveforms show an 
abrupt change from 2 A to 2.5 A of the output current oi  at t 
= 4 ms, and the opposite transition at t = 24 ms. It can be 
appreciated that both settling time and damping ratio meet with 
their design bounds. 

The same current disturbance is simulated for the 
multivariable cascade converter and the waveforms are 
depicted in Fig. 3. It can be appreciated that the settling time 
and damping ratio meet the design bounds. Moreover, the 
disturbance rejection is better in Fig. 3. 

The same current disturbance is simulated for the 
multivariable cascade converter and the waveforms are 
depicted in Fig. 3. It can be appreciated that the settling time 
and damping ratio meet the design bounds. Moreover, the 
disturbance rejection is better in Fig. 3. 

Figs. 4 and 5 illustrate the responses of voltages 1ov and 

2ov  to an input voltage variation in the monovariable and 
multivariable cases, respectively. The input voltage 

gv changes abruptly from 10 V to 12 V at t = 4 ms and returns 

to 10 V at t = 24 ms. Again, the waveforms comply with the 
expected performances of settling time and damping ratio. Also, 
disturbance is better rejected in the multivariable case.  

.

 
Fig. 6. Circuital diagram of the dc-dc cascade boost converter. 

 

 
(a) Voltage response 2ov . 

 
(b) Voltage response 1ov . 

Fig. 7. Experimental response of the monovariable.  
 

 
(a) Voltage response 2ov . 
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(b) Voltage response 1ov . 

Fig.8. Experimental response of the multivariable cascade boost 
converter to a load step transient of 0.5 A. 

 

V. EXPERIMENTAL RESULTS 
In this section, we corroborate the previous derivations and 

simulated waveforms with experimental results. We have 
implemented a prototype in accordance with tables I and II. 
The prototype scheme is depicted in Fig.6, where the current is 
measured by means of shunt resistances 1sR and 2sR of 10 

mΩ  and two current shunt monitors INA 139. The controller 
details of the monovariable and multivariable controllers, 
according to (34) and (35), are shown in Figs. 9a and 9b, 
respectively 

Figs. 10 and 11 show the responses to an input voltage 
change from 10 V to 12 V. These experimental results and the 
previous simulated waveforms of figures 4 and 5 are also in 
very good agreement. 

 

 
(a) Monovariable case. 

 
(b) Multivariable case. 

Fig. 9. Schematic diagrams of the proposed controllers. 
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(a) Voltage response 2ov . 

 
(b) Voltage response 1ov . 

Fig. 10. Experimental response of the monovariable cascade 
boost converter to input voltage variations.  

 
 
 
 

VI. CONCLUSIONS 
In the paper, we analyze two averaged models of dc-dc 

cascade boost converters. The model is monovariable when the 
switch signal is the same in each stage. On the contrary, the 
model is multivariable when the switch signal is different for 
each stage. The models take into account parametric 
uncertainty by means of a polytopic representation. Then, after 
reviewing some design constraints in LMI control design, we 
apply the LMI robust control to the monovariable and 
multivariable models with the objective of maximizing the 
output-current disturbance rejection. Finally, we corroborate 
the procedure by means of experimental measures which show 
a good agreement with the analytical derivations and the 
simulated waveforms. 

The multivariable model performs better; that is, it has a 
better disturbance rejection at the expense of a slightly more 
complex controller. The method can be extended to more 
stages connected in cascade, thus exploiting all the degrees of 
freedom of the plant. Also, the proposed method can be readily 
extended to other converter topologies. 

 
(a) Voltage response 2ov . 

 
(b) Voltage response 1ov . 

Fig. 11. Experimental response of the multivariable cascade 
boost converter to input voltage variations. 
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