• Title/Summary/Keyword: multiferroic

Search Result 76, Processing Time 0.029 seconds

Dielectric and Magnetic Properties of Niobium and Cobalt Co-substituted Multiferroic BiFeO3 Thin Films (Niobium과 Cobalt를 첨가한 Multiferroic BiFeO3 박막의 유전 특성 및 자성 특성)

  • Jun, Youn-Ki;Hong, Seong-Hyeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.556-560
    • /
    • 2008
  • The effects of Nb and Co ion substitution on the dielectric and magnetic properties of the multiferroic $BiFeO_3$ thin films have been investigated. Heteroepitaxial $BiFeO_3$ thin films were deposited by Pulsed Laser Deposition method. Nb substitution decreased the leakage current by 6 orders of magnitude and Co substituted $BiFeO_3$ thin films showed an enhanced magnetization, 2 times larger than that of un-substituted $BiFeO_3$. Through the co-substitution of Co and Nb, $BiFeO_3$ thin films with a low leakage current and an enhanced magnetization could be obtained.

Magnetic Properties of Multiferroic h-HoMnO3 (Multiferroic h-HoMnO3의 자기적 성질 연구)

  • Kim, Sung-Baek;Kum, Bok-Yeon;Kim, Chul-Sung;An, Sung-Yong;Park, N.Hur, S.;Cheong, S.W.;Jang, Kwang-Hyun;Park, J.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.113-117
    • /
    • 2005
  • Multiferroic $HoMnO_3$ single crystal was prepared using 4-point focused floating zone furnace, and polycrystalline $HoMn_{1-x}\;^57Fe_xO_3$ (x=0.00, 0.01, 0.02, 0.05) powders have been prepared by solid state reaction. Their magnetic and crystallographic properties are studied using MPMS, PPMS, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structure found to be a hexagonal and a magnetic easy-axis is (110) direction. As the external applied magnetic field increases, temperature of the dielectric constant anomaly is decreased. $HoMn_{0.95}\;^{57}Fe_{0.05}O_3$ shows huge quadrupole splitting value from the $M\ddot{o}ssbauer$ spectra.

Magnetic and Electric Properties of Multiferroic Ni-doped BiFeO3

  • Yu, Yeong-Jun;Hwang, Ji-Seop;Park, Jeong-Su;Lee, Ju-Yeol;Gang, Ji-Hun;Kim, Gi-Won;Lee, Gwang-Hun;Lee, Bo-Hwa;Lee, Yeong-Baek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.182-182
    • /
    • 2014
  • Multiferroic materials have attracted much attention due to their own fascinating fundamental physical properties and potential technological applications to magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because the enhanced ferromagnetism was found by the Fe-site ion substitution with magnetic ions. The structural, the magnetic and the ferroelectric properties of polycrystalline $BiFe_{1-x}Ni_xO_3$ (x=0, 0.01, 0.02, 0.03 and 0.05), which were prepared by the solid-state reaction and the rapid-sintering method, have been investigated. The x-ray diffraction patterns reveal that all the samples are in single phase and show rhombohedral structure with R3c space group. The magnetic properties are enhanced according to the doping content. The Ni-doped $BiFeO_3$ samples exhibit lossy P-E loop due to the oxygen vacancy. The leakage current density of Ni-doped samples (x=0.01 and 0.02) is increased by four orders of magnitude. On the other hand, the x=0.03 and 0.05 samples show the relative reduction of the leakage current.

  • PDF

Electrical and Magnetic Properties of BiFeO3 Multiferroic Ceramics

  • Roy, M.;Jangid, Sumit;Barbar, Shiv Kumar;Dave, Praniti
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.62-65
    • /
    • 2009
  • The multiferroic $BiFeO_3$ has been investigated extensively in both thin film and ceramic form. However, the synthesis of a perfect sample with high resistivity is a prerequisite for examining its properties. This paper reports the synthesis of multiferroic $BiFeO_3$ along with its structural, electrical and magnetic properties in ceramic form. Polycrystalline ceramic samples of $BiFeO_3$ were synthesized by solid-state reaction using high purity oxides and carbonates. The formation of a single-phase compound was confirmed by x-ray diffraction and its lattice parameters were determined using a standard computer program. The microstructural studies and density measurement confirmed that the prepared samples were sufficiently dense for an examination of its electrical and magnetic properties. The dc electrical conductivity studies show that the sample was resistive with an activation energy of ${\sim}0.81\;eV$. The magnetization measurement showed a linear ($M{\sim}H$) curve indicating antiferromagnetic characteristics.

The Electronic Structure Calculations for Hexagonal Multiferroic Materials (다중강전자 상태를 가진 육방정계물질의 전자구조 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.152-155
    • /
    • 2007
  • We have studied electronic structures and magnetic properties of $YMnO_3,\;ScManO_3$ with hexagonal structure using Full Potential Linearized Augmented Plane Wave (FLAPW) method based on LSDA method. LSDA calculation results show that multiferroic $YMnO_3$ shows energy gap due to hexagonal symmetry and magnetic interaction. Because of insulating gap and small Y ion, $YMnO_3$ shows magnetic and ferroelectric state. However, $ScMnO_3$ does not show the energy gap because of strong hybridization of Mn-O for LSDA calculation. We confirmed the stability of multiferroic state for $YMnO_3\;and\;ScManO_3$ using total energy calculations. The antiferromagnetic and ferroelectric states have the lowest energy about 100 meV.

Magnetic Properties and Impedance Spectroscopic Studies of Multiferroic Bi1-xNdxFeO3 Materials

  • Thang, Dao Viet;Thao, Du Thi Xuan;Minh, Nguyen Van
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • Nd-doped $BiFeO_3$ materials were synthesized via a sol-gel method. The crystal structure, magnetic properties, and complex impedance spectroscopy of multiferroic $Bi_{1-x}Nd_xFeO_3$ (BNFO) materials were investigated by X-ray diffraction (XRD), Raman scattering, vibrating sample magnetometer (VSM), and complex impedance spectroscopy. Our results show that the lattice crystal constants (a, c) and the ratio c/a of BNFO materials decreased with increasing Nd concentration. All samples exhibited weak ferromagnetism at room temperature, and the magnetization of samples was enhanced by the presence of $Nd^{3+}$ ions. There was an enhancement in the spontaneous magnetization of BFO with increasing Nd concentration, which is attributable to the collapse of the spin cycloid structure.

Frequency characteristics of a multiferroic Piezoelectric/LEMV/CFRP/Piezomagnetic composite hollow cylinder under the influence of rotation and hydrostatic stress

  • Selvamani, R.;Mahesh, S.;Ebrahimi, F.
    • Coupled systems mechanics
    • /
    • v.10 no.2
    • /
    • pp.185-198
    • /
    • 2021
  • An analytical model is consider to scrutinize axisymmetric wave propagation in multiferroic hollow cylinder with rotating and initial stressed forces, where a piezomagnetic (PM) material layer is bonded to a piezoelectric (PE) cylinder together by Linear elastic materials with voids. Both distinct material combos are taken into account. Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic induction. The numerical calculations are carried out for the non-dimensional frequency by fixing wave number and thickness. The arrived outputs are plotted as the dispersion curves for different layers. The results obtained in this paper can offer significance to the application of PE/PM composite hollow cylinder via LEMV and CFRP layers for the acoustic wave and microwave technologies.

Multiferroic Property and Crystal Structural Transition of BiFeO3-SrTiO3 Ceramics

  • Kim, A-Young;Han, Seung-Ho;Kim, Jeong-Seog;Cheon, Chae-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.307-311
    • /
    • 2011
  • Solid solutions of the (1-x)$BiFeO_3-xSrTiO_3$ ceramic system (x = 0~0.4) are explored here in attempts to obtain multiferroic properties in these systems. The polarization-electric field hysteresis, magnetization-magnetic field curves, and dielectric properties are also characterized. This solid-solution system shows a crystal structural transition from a noncentrosymmetric (R3c) structure to a centrosymmetric (Pm-3m) structure at 0.3 < x < 0.4. The solid solution ceramic shows unsaturated M-H behavior and low remanent magnetization over the composition region of 0.1 ${\leq}$ x ${\leq}$ 0.3. The $0.7BiFeO_3-0.3SrTiO_3$ system shows the largest value of $M_s$ at 0.17 emu/g and the smallest value of $H_c$ at 1.06 kOe. The P-E hysteresis curves were not saturated under an electric field as high as E = 70 kV/cm. This system is considered to have multiferroic characteristics in the composition range of 0.1 ${\leq}$ x ${\leq}$ 0.3.

First-principles studies on mechanical, electronic, magnetic and optical properties of new multiferroic members BiLaFe2O6 and Bi2FeMnO6: Originated from BiFeO3

  • Tuersun, Yisimayili;Rouzhahong, Yilimiranmu;Maimaiti, Maihemuti;Salamu, Abidiguli;Xiaerding, Fuerkaiti;Mamat, Mamatrishat;Jing, Qun
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1473-1479
    • /
    • 2018
  • Recently multiferroic materials have attract great interest for the applications on memorial, spintronic and magneto-electric sensor devices for their spontaneous magneto-electric coupling properties. Research and development of the various kinds of multiferroics are indispensable factor for a new generation multifunctional materials. In this research, mechanical, electronic, magnetic and nonlinear optical properties of La modified $BiLaFe_2O_6$ (BLFO) and Mn modified $Bi_2FeMnO_6$ (BFMO) were studied as new members of multiferroic $BiFeO_3$ (BFO) series by first-principles calculations, and compared with the pure BFO to discover the optimized properties. Our results show that BLFO and BFMO have good mechanical stability as revealed by elastic constants that satisfy the stability criteria. All these compounds exhibit anisotropic and ductile nature. The enhanced properties by La and Mn substitution, such as increased hardness, improved magnetism, decreased band gap and comparable second harmonic generation responses reveal that the new multiferroic members of BLFO and BFMO would get wider application than their BFO counterpart. Our study is expected to providing an appropriate mechanical reference data as guidance for engineering of high efficiency multifunctional devices with the BFO series.

Magnetic Properties of Multiferroic $BiFeO_3/BaTiO_3$ Bi-layer Thin Films

  • Yang, P.;Byun, S.H.;Kim, K.M.;Lee, Y.H.;Lee, J.Y.;Zhu, J.S.;Lee, H.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.318-319
    • /
    • 2008
  • In this article, magnetic properties of multiferroic bi-layer $BiFeO_3$ (BFO)/$BaTiO_3$ (BTO) thin films were studied. It was found that the magnetization increased by the insertion of BTO buffer layer even though the interfacial stress was slightly relaxed, which indicated a coupling between the ferroelectric and ferromagnetic orders. Furthermore, with slightly increase of BFO film thickness, both BFO and BFO/BTO bi-layer films showed anisotropic magnetic properties with higher in-plane magnetization than the values measured out-of-plane. These are attributable to strain constraint effect at the interface.

  • PDF