DOI QR코드

DOI QR Code

Frequency characteristics of a multiferroic Piezoelectric/LEMV/CFRP/Piezomagnetic composite hollow cylinder under the influence of rotation and hydrostatic stress

  • Selvamani, R. (Department of Mathematics, Karunya Institute of Technology and Sciences) ;
  • Mahesh, S. (Department of Mathematics, Karunya Institute of Technology and Sciences) ;
  • Ebrahimi, F. (Department of Mechanical Engineering, Imam Khomieni International University)
  • Received : 2020.06.27
  • Accepted : 2021.05.11
  • Published : 2021.04.25

Abstract

An analytical model is consider to scrutinize axisymmetric wave propagation in multiferroic hollow cylinder with rotating and initial stressed forces, where a piezomagnetic (PM) material layer is bonded to a piezoelectric (PE) cylinder together by Linear elastic materials with voids. Both distinct material combos are taken into account. Three displacement potential functions are introduced to uncouple the equations of motion, electric and magnetic induction. The numerical calculations are carried out for the non-dimensional frequency by fixing wave number and thickness. The arrived outputs are plotted as the dispersion curves for different layers. The results obtained in this paper can offer significance to the application of PE/PM composite hollow cylinder via LEMV and CFRP layers for the acoustic wave and microwave technologies.

Keywords

References

  1. Abo-el-nour, N.A., Fatimah, A. and Abdullah, Y.A. (2009), "Effect of initial stresses on dispersion relation of transverse waves in a piezoelectric layered cylinder", Mater. Sci. Eng. B, 162(3), 147-154. https://doi.org/10.1016/j.mseb.2009.03.024.
  2. Aboudi, J. (2001), "Micromechanical analysis of fully coupled electromagneto- thermo-elastic multiphase composites", Smart Mater. Struct., 10, 867-877. https://doi.org/10.1088/0964-1726/10/5/303.
  3. Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019c), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Mod. Phys. Lett. B, 33(35), 1950439. https://doi.org/10.1142/S0217984919504396.
  4. Buchanan, G.R. (2003), "Free vibration of an infinite magneto-electro elastic cylinder", J. Sound Vib., 268, 413-426. https://doi.org/10.1016/S0022-460X(03)00357-2.
  5. Du, J.K., Jin, X.Y. and Wang, J. (2007), "Love wave propagation in layered magneto-electro-elastic structures with initial stress", Acta Mechanica, 192, 169-189. https://doi.org/10.1007/s11433-008-0058.
  6. Du, J.K., Xian, K. and Wang, J. (2009), "SH surface acoustic wave propagation in a cylindrically layered piezomagnetic/piezoelectric structure", Ultrasonic., 49(1), 131-138. https://doi.org/10.1016/j.ultras.2008.07.020.
  7. Khan, A.A., Bukhari, S.R., Marin, M. and Ellahi, R. (2019d), "Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index", Heat Transf. Res., 50(11), 1061-1080. https://doi.org/10.1615/HeatTransRes.2018028397.
  8. Li, J.Y. (2000b), "Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials", Int. J. Eng. Sci., 38, 1993-2011. https://doi.org/10.1016/S0020-7225(00)00014-8.
  9. Li, J.Y. and Dunn, M.L. (1998), "Micromechanics of magnetoelectroelastic composite materials: average field and effective behavior", J. Intell. Mater. Syst. Struct., 9, 404-416. https://doi.org/10.1177/1045389X9800900602.
  10. Marin, M., Vlase, S. and Paun, M. (2015), "Considerations on double porosity structure for micro polar bodies", AIP Adv., 5(3), 037113. https://doi.org/10.1063/1.4914912.
  11. Nan, C.W. (1994), "Magneto-electric effect in composites of piezoelectric and piezomagnetic phases", Phys. Rev. B, 50, 6082-6088. https://doi.org/10.1103/PhysRevB.50.6082.
  12. Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D. and Srinvasan, G. (2008a), "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions", Int. J. Appl. Phys., 103, 031101. https://doi.org/10.1063/1.2836410.
  13. Nelson, V.K. and Karthikeyan, S. (2008d), "Axisymmetric vibration of pyrocomposite hollow cylinder", Waset, 13, 474-480.
  14. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", Tran. ASME, 68, 608-618. https://doi.org/10.1115/1.1380385.
  15. Piliposian, G.T., Avetisyan, A.S. and Ghazaryanb, K.B. (2012a), "Shear wave propagation in periodic phononic/photonic piezoelectric medium", Wave Motion., 49(1), 125-134. https://doi.org/10.1016/j.wavemoti.2011.08.001.
  16. Ponnusamy, P. and Selvamani, R. (2012a), "Dispersion analysis of a generalized magneto thermo elastic cylindrical panel", J. Therm. Stress., 35, 1119-1142. https://doi.org/10.1080/01495739.2012.720496.
  17. Ponnusamy, P. and Selvamani, R. (2013), "Wave propagation in a magneto thermo elastic cylindrical panel", Eur. J. Mech. A/Solid., 39, 76-85. https://doi.org/10.1016/j.euromechsol.2012.11.004.
  18. Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019b), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transf. Res., 50, 16. https://doi.org/10.1615/HeatTransRes.2019025622.
  19. Selvamani, R. and Mahesh, S. (2019a), "Mathematical modeling and analysis of elastic waves in a thermo piezoelectric multilayered rotating composite rod with LEMV/CFRP interface", Tech. Mech. Eur. J. Mech. A Solid., 39(3), 241-251. https://doi.org/10.24352/UB.OVGU-2019-022.
  20. Sharma, J.N. and Pal, M. (2004), "Rayleigh-Lamb waves in magnetothermoelastic homogeneous isotropic plate", Int. J. Eng. Sci., 42, 137-155. https://doi.org/10.1016/S0020-7225(03)00282-9.
  21. Sharma, J.N. and Thakur, M.D. (2006a), "Effect of rotation on Rayleigh-Lamb waves in magnetothermoelastic media", J. Sound Vib., 296, 871-887. https://doi.org/10.1016/j.jsv.2006.03.014.
  22. Soh, A.K. and Liu, J.X. (2006b), "Interfacial shear horizontal waves in a piezoelectric-piezomagnetic bimaterial", Philos. Mag. Lett., 86, 31-35. https://doi.org/10.1080/09500830500492125.
  23. Van Run, J.G., Terrell, D.R. and Scholing, J.H. (1974), "In situ grown eutectic magnetoelectric composite material. Physical-properties", J. Mater. Sci., 9, 1710-1714. https://doi.org/10.1007/BF00540771.
  24. Wang, X. and Shen, Y.P. (2002), "The general solution of three-dimensional problem in magneto-electroelastic media", Int. J. Eng. Sci., 40, 1069-1080. https://doi.org/10.1016/S0020-7225(02)00006-X.
  25. Wang, Y.Z., Li, F.M., Huang, W.H., Jiang, X.A., Wang, Y.S. and Kishimoto, K. (2008c), "Wave band gaps in two dimensional piezoelectric/piezomagnetic phononic crystals", Int. J. Solid. Struct., 45, 4203-4210. https://doi.org/10.1016/j.ijsolstr.2008.03.001.
  26. Wu, T.L. and Huang, J.H. (2000a), "Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases", Int. J. Solid. Struct., 37, 2981-3009. https://doi.org/10.1016/S0020-7683(99)00116-X.
  27. Zhang, J., Shen, Y.P. and Du, J.K. (2008b), "The effect of inhomogeneous initial stress on Love wave propagation in layered magneto-electro-elastic structure", Smart Mater. Struct., 17, 25-26. https://doi.org/10.1088/0964-1726/17/2/025026.