Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.08.018

First-principles studies on mechanical, electronic, magnetic and optical properties of new multiferroic members BiLaFe2O6 and Bi2FeMnO6: Originated from BiFeO3  

Tuersun, Yisimayili (School of Physics and Technology, Xinjiang University)
Rouzhahong, Yilimiranmu (School of Physics and Technology, Xinjiang University)
Maimaiti, Maihemuti (School of Physics and Technology, Xinjiang University)
Salamu, Abidiguli (School of Physics and Technology, Xinjiang University)
Xiaerding, Fuerkaiti (School of Physics and Technology, Xinjiang University)
Mamat, Mamatrishat (School of Physics and Technology, Xinjiang University)
Jing, Qun (School of Physics and Technology, Xinjiang University)
Abstract
Recently multiferroic materials have attract great interest for the applications on memorial, spintronic and magneto-electric sensor devices for their spontaneous magneto-electric coupling properties. Research and development of the various kinds of multiferroics are indispensable factor for a new generation multifunctional materials. In this research, mechanical, electronic, magnetic and nonlinear optical properties of La modified $BiLaFe_2O_6$ (BLFO) and Mn modified $Bi_2FeMnO_6$ (BFMO) were studied as new members of multiferroic $BiFeO_3$ (BFO) series by first-principles calculations, and compared with the pure BFO to discover the optimized properties. Our results show that BLFO and BFMO have good mechanical stability as revealed by elastic constants that satisfy the stability criteria. All these compounds exhibit anisotropic and ductile nature. The enhanced properties by La and Mn substitution, such as increased hardness, improved magnetism, decreased band gap and comparable second harmonic generation responses reveal that the new multiferroic members of BLFO and BFMO would get wider application than their BFO counterpart. Our study is expected to providing an appropriate mechanical reference data as guidance for engineering of high efficiency multifunctional devices with the BFO series.
Keywords
Elastic constant; Band gap; Spin density; Second harmonic generation response;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Kan, L. Palova, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Universal behavior and electric-field-induced structural transition in rare-earth-substituted $BiFeO_3$, Adv. Funct. Mater. 20 (7) (2010) 1108-1115.   DOI
2 Z. Quan, W. Liu, H. Hu, S. Xu, B. Sebo, G. Fang, M. Li, X. Zhao, Microstructure, electrical and magnetic properties of Ce-doped $BiFeO_3$ thin films, J. Appl. Phys. 104 (8) (2008) 084106.   DOI
3 X. Wang, H. Liu, B. Yan, Enhanced ferroelectric properties of Ce-substituted $BiFeO_3$ thin films prepared by sol-gel process, J. Sol. Gel Sci. Technol. 47 (2) (2008) 124-127.   DOI
4 S. Gupta, M. Tomar, A.R. James, V. Gupta, Ce-doped bismuth ferrite thin films with improved electrical and functional properties, J. Mater. Sci. 49 (15) (2014) 5355-5364.   DOI
5 Y.H. Lee, J.M. Wu, C.H. Lai, Influence of La doping in multiferroic properties of $BiFeO_3$ thin films, Appl. Phys. Lett. 88 (4) (2006) 042903.   DOI
6 Y. Du, Z.X. Cheng, M. Shahbazi, E.W. Collings, S.X. Dou, X.L. Wang, Enhancement of ferromagnetic and dielectric properties in lanthanum doped $BiFeO_3$ by hydrothermal synthesis, J. Alloys Compd. 490 (1-2) (2010) 637-641.   DOI
7 S. Jangid, S.K. Barbar, I. Bala, M. Roy, Structural, thermal, electrical and magnetic properties of pure and 50% La doped $BiFeO_3$ ceramics, Phys. B Condens. Matter 407 (18) (2012) 3694-3699.   DOI
8 V.V. Lazenka, A.F. Ravinski, I.I. Makoed, J. Vanacken, G. Zhang, V.V. Moshchalkov, Weak ferromagnetism in La-doped $BiFeO_3$ multiferroic thin films, J. Appl. Phys. 111 (12) (2012) 123916.   DOI
9 A.T. Raghavender, N.H. Hong, Effects of Mn doping on structural and magnetic properties of multiferroic $BiFeO_3$ nanograins made by sol-gel method, J. Magn. 16 (1) (2011) 19-22.   DOI
10 S. Basu, S.K.M. Hossain, D. Chakravorty, M. Pal, Enhanced magnetic properties in hydrothermally synthesized Mn-doped $BiFeO_3$ nanoparticles, Curr. Appl. Phys. 11 (4) (2011) 976-980.   DOI
11 S.L. Shang, G. Sheng, Y. Wang, L.Q. Chen, Z.K. Liu, Elastic properties of cubic and rhombohedral $BiFeO_3$ from first-principles calculations, Phys. Rev. B 80 (5) (2009) 052102.
12 H. Dong, C. Chen, S. Wang, W. Duan, J. Li, Elastic properties of tetragonal $BiFeO_3$ from first-principles calculations, Appl. Phys. Lett. 102 (18) (2013) 182905.   DOI
13 S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. fur Kristallogr. - Cryst. Mater. 220 (5-6) (2005) 567-570.
14 J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868.   DOI
15 F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite $BiFeO_3$, Acta Crystallogr. 46 (6) (2010) 698-702.
16 D. Ricinschi, K.Y. Yun, M. Okuyama, A mechanism for the $150{\mu}C\;cm^{-2}$ polarization of $BiFeO_3$ films based on first-principles calculations and new structural data, J. Phys. Condens. Matter 18 (6) (2006) L97-L105.   DOI
17 M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites, Phys. Rev. B 68 (13) (2003) 132408.   DOI
18 J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic $BiFeO_3$, Phys. Rev. B 71 (1) (2005) 014113.   DOI
19 S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, Crystal chemistry and domain structure of rare-earth doped $BiFeO_3$ ceramics, J. Mater. Sci. 44 (19) (2009) 5102-5112.   DOI
20 T. Shen, C. Hu, H.L. Dai, W.L. Yang, H.C. Liu, X.L. Wei, First principles study of structural, electronic and optical properties of $BiFeO_3$ in ferroelectric and paraelectric phases, Mater. Res. Innovat. 19 (sup5) (2015) S5-684-S5-688.
21 F. De Martini, V. Buzek, F. Sciarrino, C. Sias, Experimental realization of the quantum universal NOT gate, Nature 419 (6909) (2002) 815-818.   DOI
22 T. Kanai, S. Ohkoshi, A. Nakajima, T. Watanabe, K. Hashimoto, A ferroelectric-ferromagnet composed of $(PLZT)_x(BiFeO_3)_{1-x}$ solid solution, Adv. Mater. 13 (7) (2001) 487-490.   DOI
23 Z. Hu, M. Li, J. Liu, L. Pei, J. Wang, B. Yu, X. Zhao, Structural transition and multiferroic properties of Eu-doped $BiFeO_3$ thin films, J. Am. Ceram. Soc. 93 (9) (2010) 2743-2747.   DOI
24 G.S. Lotey, N.K. Verma, Multiferroism in rare earth metals-doped $BiFeO_3$ nanowires, Superlattice. Microst. 60 (8) (2013) 60-66.   DOI
25 X. Xu, T. Guoqiang, R. Huijun, X. Ao, Structural, electric and multiferroic properties of Sm-doped $BiFeO_3$ thin films prepared by the sol-gel process, Ceram. Int. 39 (6) (2013) 6223-6228.   DOI
26 J. Wang, Epitaxial $BiFeO_3$ multiferroic thin film heterostructures, Science 299 (5613) (2003) 1719-1722.   DOI
27 J. Wei, D. Xue, C. Wu, Z. Li, Enhanced ferromagnetic properties of multiferroic $Bi_{1-x}Sr_xMn_{0.2}Fe_{0.8}O_3$ synthesized by sol-gel process, J. Alloys Compd. 453 (1-2) (2008) 20-23.   DOI
28 R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in $BiFeO_3$, J. Phys. Condens. Matter 20 (4) (2008) 045218.   DOI
29 V.A. Khomchenko, J.A. Paixao, B.F.O. Costa, D.V. Karpinsky, A.L. Kholkin, I.O. Troyanchuk, V.V. Shvartsman, P. Borisov, W. Kleemann, Structural, ferroelectric and magnetic properties of $Bi_{0.85}Sm_{0.15}FeO_3$ perovskite, Cryst. Res. Technol. 46 (3) (2011) 238-242.   DOI
30 J.R. Chen, W.L. Wang, J.B. Li, G.H. Rao, X-ray diffraction analysis and specific heat capacity of $(Bi_{1-x}La_x)FeO_3$ perovskites, J. Alloys Compd. 459 (1-2) (2008) 66-70.   DOI
31 A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a $Bi_{1-x}La_xFeO_3$ system studied using 57 Fe NMR, Phys. Solid State 45 (1) (2003) 141-145.   DOI
32 P. Chen, O. Gunaydin-Sen, W.J. Ren, Z. Qin, T.V. Brinzari, S. McGill, S.W. Cheong, J.L. Musfeldt, Spin cycloid quenching in $Nd^{3+}$-substituted $BiFeO_3$, Phys. Rev. B 86 (1) (2012) 014407.   DOI
33 R. Xiao, V.O. Pelenovich, D. Fu, Spin cycloid destruction in Pr doped $BiFeO_3$ films studied by conversion-electron Mossbauer spectroscopy, Appl. Phys. Lett. 103 (1) (2013) 012901.   DOI
34 S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Phil. Mag. J. Sci. 45 (367) (1954) 823-843.   DOI
35 L. Bi, A.R. Taussig, H.-S. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, C.A. Ross, Structural, magnetic, and optical properties of $BiFeO_3$ and $Bi_2FeMnO_6$ epitaxial thin films: an experimental and first-principles study, Phys. Rev. B 78 (10) (2008) 1884-1898.
36 C. Aversa, J.E. Sipe, Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis, Phys. Rev. B 52 (20) (1995) 14636-14645.   DOI
37 M.K. Yaakob, M.F.M. Taib, M.S.M. Deni, A. Chandra, L. Lu, M.Z.A. Yahya, First principle study on structural, elastic and electronic properties of cubic $BiFeO_3$, Ceram. Int. 39 (2013) S283-S286.   DOI
38 J. Shen, S. Johnston, S. Shang, T. Anderson, Calculated strain energy of hexagonal epitaxial thin films, J. Cryst. Growth 240 (1) (2002) 6-13.   DOI
39 M. Born, K. Huang, M. Lax, Dynamical theory of crystal lattices, Am. J. Phys. 23 (7) (1955) 474.
40 M. Chauhan, D.C. Gupta, Electronic, mechanical, phase transition and thermo-physical properties of TiC, ZrC and HfC: high pressure computational study, Diam. Relat. Mater. 40 (2013) 96-106.   DOI
41 M. Chauhan, D.C. Gupta, Phase stability, ductility, electronic, elastic and thermo-physical properties of TMNs (TM=V, Nb and Ta): an ab initio high pressure study, Comput. Mater. Sci. 90 (2014) 182-195.   DOI
42 S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (5) (2008) 055504.   DOI
43 D.A. Roberts, Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions, IEEE J. Quant. Electron. 28 (10) (1992) 2057-2074.   DOI
44 D.H. Chung, W.R. Buessem, The Voigt‐Reuss‐hill (VRH) approximation and the elastic moduli of polycrystalline ZnO, $TiO_2$ (Rutile), and ${\alpha}-Al_2O_3$, J. Appl. Phys. 39 (6) (1968) 2777-2782.   DOI
45 Y. Li, The anisotropic behavior of Poisson's ratio, Young's modulus, and shear modulus in hexagonal materials, Phys. Status Solidi 38 (1) (1976) 171-175.   DOI
46 M.K. Yaakob, M.F.M. Taib, L. Lu, O.H. Hassan, M.Z.A. Yahya, Self-interaction corrected LDA + U investigations of $BiFeO_3$ properties: plane-wave pseudopotential method, Mater. Res. Express 2 (11) (2015) 116101.   DOI
47 L. Bi, A.R. Taussig, H.S. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, C.A. Ross, Structural, magnetic, and optical properties of $BiFeO_3$ and $Bi_2FeMnO_6$ epitaxial thin films: an experimental and first-principles study, Phys. Rev. B 78 (10) (2008) 104106.   DOI