DOI QR코드

DOI QR Code

First-principles studies on mechanical, electronic, magnetic and optical properties of new multiferroic members BiLaFe2O6 and Bi2FeMnO6: Originated from BiFeO3

  • Received : 2018.05.10
  • Accepted : 2018.08.30
  • Published : 2018.12.31

Abstract

Recently multiferroic materials have attract great interest for the applications on memorial, spintronic and magneto-electric sensor devices for their spontaneous magneto-electric coupling properties. Research and development of the various kinds of multiferroics are indispensable factor for a new generation multifunctional materials. In this research, mechanical, electronic, magnetic and nonlinear optical properties of La modified $BiLaFe_2O_6$ (BLFO) and Mn modified $Bi_2FeMnO_6$ (BFMO) were studied as new members of multiferroic $BiFeO_3$ (BFO) series by first-principles calculations, and compared with the pure BFO to discover the optimized properties. Our results show that BLFO and BFMO have good mechanical stability as revealed by elastic constants that satisfy the stability criteria. All these compounds exhibit anisotropic and ductile nature. The enhanced properties by La and Mn substitution, such as increased hardness, improved magnetism, decreased band gap and comparable second harmonic generation responses reveal that the new multiferroic members of BLFO and BFMO would get wider application than their BFO counterpart. Our study is expected to providing an appropriate mechanical reference data as guidance for engineering of high efficiency multifunctional devices with the BFO series.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. M.I. Bichurin, D.A. Filippov, V.M. Petrov, V.M. Laletsin, N. Paddubnaya, G. Srinivasan, Resonance magnetoelectric effects in layered magnetostrictive-piezoelectric composites, Phys. Rev. B 68 (13) (2003) 132408. https://doi.org/10.1103/PhysRevB.68.132408
  2. F. De Martini, V. Buzek, F. Sciarrino, C. Sias, Experimental realization of the quantum universal NOT gate, Nature 419 (6909) (2002) 815-818. https://doi.org/10.1038/nature01093
  3. T. Kanai, S. Ohkoshi, A. Nakajima, T. Watanabe, K. Hashimoto, A ferroelectric-ferromagnet composed of $(PLZT)_x(BiFeO_3)_{1-x}$ solid solution, Adv. Mater. 13 (7) (2001) 487-490. https://doi.org/10.1002/1521-4095(200104)13:7<487::AID-ADMA487>3.0.CO;2-L
  4. Z. Hu, M. Li, J. Liu, L. Pei, J. Wang, B. Yu, X. Zhao, Structural transition and multiferroic properties of Eu-doped $BiFeO_3$ thin films, J. Am. Ceram. Soc. 93 (9) (2010) 2743-2747. https://doi.org/10.1111/j.1551-2916.2010.03766.x
  5. G.S. Lotey, N.K. Verma, Multiferroism in rare earth metals-doped $BiFeO_3$ nanowires, Superlattice. Microst. 60 (8) (2013) 60-66. https://doi.org/10.1016/j.spmi.2013.04.022
  6. X. Xu, T. Guoqiang, R. Huijun, X. Ao, Structural, electric and multiferroic properties of Sm-doped $BiFeO_3$ thin films prepared by the sol-gel process, Ceram. Int. 39 (6) (2013) 6223-6228. https://doi.org/10.1016/j.ceramint.2013.01.042
  7. J. Wang, Epitaxial $BiFeO_3$ multiferroic thin film heterostructures, Science 299 (5613) (2003) 1719-1722. https://doi.org/10.1126/science.1080615
  8. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic $BiFeO_3$, Phys. Rev. B 71 (1) (2005) 014113. https://doi.org/10.1103/PhysRevB.71.014113
  9. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in $BiFeO_3$, J. Phys. Condens. Matter 20 (4) (2008) 045218. https://doi.org/10.1088/0953-8984/20/04/045218
  10. V.A. Khomchenko, J.A. Paixao, B.F.O. Costa, D.V. Karpinsky, A.L. Kholkin, I.O. Troyanchuk, V.V. Shvartsman, P. Borisov, W. Kleemann, Structural, ferroelectric and magnetic properties of $Bi_{0.85}Sm_{0.15}FeO_3$ perovskite, Cryst. Res. Technol. 46 (3) (2011) 238-242. https://doi.org/10.1002/crat.201100040
  11. J.R. Chen, W.L. Wang, J.B. Li, G.H. Rao, X-ray diffraction analysis and specific heat capacity of $(Bi_{1-x}La_x)FeO_3$ perovskites, J. Alloys Compd. 459 (1-2) (2008) 66-70. https://doi.org/10.1016/j.jallcom.2007.05.034
  12. J. Wei, D. Xue, C. Wu, Z. Li, Enhanced ferromagnetic properties of multiferroic $Bi_{1-x}Sr_xMn_{0.2}Fe_{0.8}O_3$ synthesized by sol-gel process, J. Alloys Compd. 453 (1-2) (2008) 20-23. https://doi.org/10.1016/j.jallcom.2006.11.065
  13. A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a $Bi_{1-x}La_xFeO_3$ system studied using 57 Fe NMR, Phys. Solid State 45 (1) (2003) 141-145. https://doi.org/10.1134/1.1537425
  14. P. Chen, O. Gunaydin-Sen, W.J. Ren, Z. Qin, T.V. Brinzari, S. McGill, S.W. Cheong, J.L. Musfeldt, Spin cycloid quenching in $Nd^{3+}$-substituted $BiFeO_3$, Phys. Rev. B 86 (1) (2012) 014407. https://doi.org/10.1103/PhysRevB.86.014407
  15. R. Xiao, V.O. Pelenovich, D. Fu, Spin cycloid destruction in Pr doped $BiFeO_3$ films studied by conversion-electron Mossbauer spectroscopy, Appl. Phys. Lett. 103 (1) (2013) 012901. https://doi.org/10.1063/1.4813133
  16. S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, Crystal chemistry and domain structure of rare-earth doped $BiFeO_3$ ceramics, J. Mater. Sci. 44 (19) (2009) 5102-5112. https://doi.org/10.1007/s10853-009-3545-1
  17. D. Kan, L. Palova, V. Anbusathaiah, C.J. Cheng, S. Fujino, V. Nagarajan, K.M. Rabe, I. Takeuchi, Universal behavior and electric-field-induced structural transition in rare-earth-substituted $BiFeO_3$, Adv. Funct. Mater. 20 (7) (2010) 1108-1115. https://doi.org/10.1002/adfm.200902017
  18. Z. Quan, W. Liu, H. Hu, S. Xu, B. Sebo, G. Fang, M. Li, X. Zhao, Microstructure, electrical and magnetic properties of Ce-doped $BiFeO_3$ thin films, J. Appl. Phys. 104 (8) (2008) 084106. https://doi.org/10.1063/1.3000478
  19. X. Wang, H. Liu, B. Yan, Enhanced ferroelectric properties of Ce-substituted $BiFeO_3$ thin films prepared by sol-gel process, J. Sol. Gel Sci. Technol. 47 (2) (2008) 124-127. https://doi.org/10.1007/s10971-008-1783-3
  20. S. Gupta, M. Tomar, A.R. James, V. Gupta, Ce-doped bismuth ferrite thin films with improved electrical and functional properties, J. Mater. Sci. 49 (15) (2014) 5355-5364. https://doi.org/10.1007/s10853-014-8243-y
  21. Y.H. Lee, J.M. Wu, C.H. Lai, Influence of La doping in multiferroic properties of $BiFeO_3$ thin films, Appl. Phys. Lett. 88 (4) (2006) 042903. https://doi.org/10.1063/1.2167793
  22. Y. Du, Z.X. Cheng, M. Shahbazi, E.W. Collings, S.X. Dou, X.L. Wang, Enhancement of ferromagnetic and dielectric properties in lanthanum doped $BiFeO_3$ by hydrothermal synthesis, J. Alloys Compd. 490 (1-2) (2010) 637-641. https://doi.org/10.1016/j.jallcom.2009.10.124
  23. S. Jangid, S.K. Barbar, I. Bala, M. Roy, Structural, thermal, electrical and magnetic properties of pure and 50% La doped $BiFeO_3$ ceramics, Phys. B Condens. Matter 407 (18) (2012) 3694-3699. https://doi.org/10.1016/j.physb.2012.05.013
  24. V.V. Lazenka, A.F. Ravinski, I.I. Makoed, J. Vanacken, G. Zhang, V.V. Moshchalkov, Weak ferromagnetism in La-doped $BiFeO_3$ multiferroic thin films, J. Appl. Phys. 111 (12) (2012) 123916. https://doi.org/10.1063/1.4730896
  25. A.T. Raghavender, N.H. Hong, Effects of Mn doping on structural and magnetic properties of multiferroic $BiFeO_3$ nanograins made by sol-gel method, J. Magn. 16 (1) (2011) 19-22. https://doi.org/10.4283/JMAG.2011.16.1.019
  26. S. Basu, S.K.M. Hossain, D. Chakravorty, M. Pal, Enhanced magnetic properties in hydrothermally synthesized Mn-doped $BiFeO_3$ nanoparticles, Curr. Appl. Phys. 11 (4) (2011) 976-980. https://doi.org/10.1016/j.cap.2010.12.034
  27. S.L. Shang, G. Sheng, Y. Wang, L.Q. Chen, Z.K. Liu, Elastic properties of cubic and rhombohedral $BiFeO_3$ from first-principles calculations, Phys. Rev. B 80 (5) (2009) 052102.
  28. H. Dong, C. Chen, S. Wang, W. Duan, J. Li, Elastic properties of tetragonal $BiFeO_3$ from first-principles calculations, Appl. Phys. Lett. 102 (18) (2013) 182905. https://doi.org/10.1063/1.4804641
  29. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. fur Kristallogr. - Cryst. Mater. 220 (5-6) (2005) 567-570.
  30. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  31. F. Kubel, H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite $BiFeO_3$, Acta Crystallogr. 46 (6) (2010) 698-702.
  32. D. Ricinschi, K.Y. Yun, M. Okuyama, A mechanism for the $150{\mu}C\;cm^{-2}$ polarization of $BiFeO_3$ films based on first-principles calculations and new structural data, J. Phys. Condens. Matter 18 (6) (2006) L97-L105. https://doi.org/10.1088/0953-8984/18/6/L03
  33. T. Shen, C. Hu, H.L. Dai, W.L. Yang, H.C. Liu, X.L. Wei, First principles study of structural, electronic and optical properties of $BiFeO_3$ in ferroelectric and paraelectric phases, Mater. Res. Innovat. 19 (sup5) (2015) S5-684-S5-688.
  34. L. Bi, A.R. Taussig, H.-S. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, C.A. Ross, Structural, magnetic, and optical properties of $BiFeO_3$ and $Bi_2FeMnO_6$ epitaxial thin films: an experimental and first-principles study, Phys. Rev. B 78 (10) (2008) 1884-1898.
  35. C. Aversa, J.E. Sipe, Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis, Phys. Rev. B 52 (20) (1995) 14636-14645. https://doi.org/10.1103/PhysRevB.52.14636
  36. M.K. Yaakob, M.F.M. Taib, M.S.M. Deni, A. Chandra, L. Lu, M.Z.A. Yahya, First principle study on structural, elastic and electronic properties of cubic $BiFeO_3$, Ceram. Int. 39 (2013) S283-S286. https://doi.org/10.1016/j.ceramint.2012.10.078
  37. J. Shen, S. Johnston, S. Shang, T. Anderson, Calculated strain energy of hexagonal epitaxial thin films, J. Cryst. Growth 240 (1) (2002) 6-13. https://doi.org/10.1016/S0022-0248(01)02209-6
  38. M. Born, K. Huang, M. Lax, Dynamical theory of crystal lattices, Am. J. Phys. 23 (7) (1955) 474.
  39. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Phil. Mag. J. Sci. 45 (367) (1954) 823-843. https://doi.org/10.1080/14786440808520496
  40. M. Chauhan, D.C. Gupta, Electronic, mechanical, phase transition and thermo-physical properties of TiC, ZrC and HfC: high pressure computational study, Diam. Relat. Mater. 40 (2013) 96-106. https://doi.org/10.1016/j.diamond.2013.10.011
  41. M. Chauhan, D.C. Gupta, Phase stability, ductility, electronic, elastic and thermo-physical properties of TMNs (TM=V, Nb and Ta): an ab initio high pressure study, Comput. Mater. Sci. 90 (2014) 182-195. https://doi.org/10.1016/j.commatsci.2014.03.038
  42. S.I. Ranganathan, M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (5) (2008) 055504. https://doi.org/10.1103/PhysRevLett.101.055504
  43. D.H. Chung, W.R. Buessem, The Voigt‐Reuss‐hill (VRH) approximation and the elastic moduli of polycrystalline ZnO, $TiO_2$ (Rutile), and ${\alpha}-Al_2O_3$, J. Appl. Phys. 39 (6) (1968) 2777-2782. https://doi.org/10.1063/1.1656672
  44. Y. Li, The anisotropic behavior of Poisson's ratio, Young's modulus, and shear modulus in hexagonal materials, Phys. Status Solidi 38 (1) (1976) 171-175. https://doi.org/10.1002/pssa.2210380119
  45. M.K. Yaakob, M.F.M. Taib, L. Lu, O.H. Hassan, M.Z.A. Yahya, Self-interaction corrected LDA + U investigations of $BiFeO_3$ properties: plane-wave pseudopotential method, Mater. Res. Express 2 (11) (2015) 116101. https://doi.org/10.1088/2053-1591/2/11/116101
  46. L. Bi, A.R. Taussig, H.S. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, C.A. Ross, Structural, magnetic, and optical properties of $BiFeO_3$ and $Bi_2FeMnO_6$ epitaxial thin films: an experimental and first-principles study, Phys. Rev. B 78 (10) (2008) 104106. https://doi.org/10.1103/PhysRevB.78.104106
  47. D.A. Roberts, Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions, IEEE J. Quant. Electron. 28 (10) (1992) 2057-2074. https://doi.org/10.1109/3.159516