• Title/Summary/Keyword: multi-path channel

Search Result 300, Processing Time 0.027 seconds

Packet Interference and Aggregated Throughput of Bluetooth Piconets Using an Adaptive Frequency Hopping in Rician Fading Channels (라이시안 페이딩 채널에서 AFH알고리즘을 사용하는 블루투스 피코넷의 패킷 간섭과 통합 처리량 분석)

  • Kim, Seung-Yeon;Yang, Sung-Hyun;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper we analyze the packet interference probability and the aggregated throughput of a WPAN in which a number of Bluetooth piconets share the ISM band with WLANS. Using an Adaptive Frequency Hopping algorithm, when the AFH is employed, the number of hops available to the Bluetooth piconets varies depending on the number of independent WLANs within the piconet's radio range. Using a packet collision model in a piconet cluster, we give an analysis of the packet interference probability and the aggregated throughput as a function of the available hops for the AFH algorithm. We also present an analytical model of packet interference with multi-path fading channel in a cluster of piconets. Through analysis, we obtain the packet collision probability and aggregated throughput assuming capture effect. Numerical examples are given to demonstrate the effect of various Parameters such as capture ratio, Rice factor and cluster size on the system performance.

A Reconfigurable Analog Front-end Integrated Circuit for Medical Ultrasound Imaging Systems (초음파 의료 영상 시스템을 위한 재구성 가능한 아날로그 집적회로)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.66-71
    • /
    • 2014
  • This paper presents an analog front-end integrated circuit (IC) for medical ultrasound imaging systems using standard $0.18-{\mu}m$ CMOS process. The proposed front-end circuit includes the transmit part which consists of 15-V high-voltage pulser operating at 2.6 MHz, and the receive part which consists of switch and a low-power low-noise preamplifier. Depending on the operation mode, the output driver in the transmit pulser can be reconfigured as the switch in the receive path and thus the area of the overall front-end IC is reduced by over 70% in comparison to previous work. The designed single-channel front-end prototype consumes less than $0.045mm^2$ of core area and can be utilized as a key building block in highly-integrated multi-array ultrasound medical imaging systems.

저압 전력선 채널 특성을 고려한 OFDM변조 전송

  • Kang Duk-Ha;Heo Yoon-Seok;Cho Ki-Hyung;Lee Dae-Young
    • The Journal of Information Technology
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2003
  • This paper is about power line communication(PLC) over the low power voltage grid. The main advantage with power line communication is the use of an existing infrastructure. The PLC channel can be modeled as having multi-path propagation with frequency-selective fading, typical power lines exhibit signal attenuation increasing with length and frequency. OFDM(Orthogonal Frequency Division Multiplexing) is a modulation technique where multiple low data rate carriers are combined by a transmitter to form a composite high data rate transmission. To implement the multiple carrier scheme using a bank of parallel modulators would not be very efficient in analog hardware. Each carrier in an OFDM is a sinusoid with a frequency that is an integer multiple of a base or fundamental sinusoid frequency. Therefore, each carrier is a like a Fourier series component of the composite signal. In fact, it will be shown later that an OFDM signal is created in the frequency domain, and then transformed into the time domain via the Discrete Fourier Transform(DFT).

  • PDF

Development and Application of IoT-based Contactless Ultraosonic System (IoT 기반 비접촉 초음파 측정 시스템 개발 및 적용)

  • Kim, Jihwan;Hong, Jinyoung;Kim, Rrulri;Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.70-79
    • /
    • 2020
  • The main objective of this research to develop an IoT based wireless contactless ultrasonic system (ICUS) and its application to concrete structure. The developed system consists of 16 mems, 2Mhz digitizer, amplifying circuit, FPGA, and wifi module, enabling to measure leaky surface waves from concrete specimens without physical coupling process and wires. Multi-channel analysis is performed to improve the accuracy of data analysis, and the velocity of leaky surface waves and acoustics are derived. Field inspection of railroad concrete sleepers is conducted to evaluate the performance of the system and to compare the results with conventional ultrasonic pulse velocity (UPV). As a result of the field inspection, UPV was limited to evaluate damages. This is because crack pattern of railroad sleepers is parallel to ultrasonic ray path and accessibility of the railroad at the field is disadvantageous to contact-based UPV. On the other hand, ICUS possibly detect the damages as reduction of dynamic modulus by up to 59% compared to non-damaged specimen.

A Study on QAM Transmission Schemes for Constant Amplitude Coded Multicode Biorthogonal Modulation (정진폭 부호화된 다중부호 이진직교 변조의 QAM 전송방식에 대한 연구)

  • Hong, Dae-Ki;Kim, Sun-Hee;Kim, Young-Sung;Lim, Seung-Ok;Cho, Jin-Woong;Kang, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.343-351
    • /
    • 2008
  • In this paper, we investigate the design of the QAM(Quadrature Amplitude Modulation) method for the CACB(Constant Amplitude Coded Multicode Biorthogonal) scheme. The modulation method fan improve the transmission data rate by increasing the BE(Bandwidth Efficiency). Additionally, we can improve the system performance by using the QAM SD(Soft Decision) method with the MDSA(Minimum Distance Selection Algorithm). Finally, the DFE(Decision Feedback Equalizer) for the CACB-QAM is simulated under the MPF(MultiPath Fading) channel for real implementation. The proposed scheme can be used for the PHY(PHYsical layer) standard of the WPAN(Wireless Personal Area Network) requiring high rate data transmission.

A Study on a Multi-path ATP Protocol at Ad-hoc Networks (Ad-hoc 네트워크에서 다중경로를 지원하는 ATP 프로토콜에 대한 연구)

  • Lee, Hak-Ju;Jang, Jae-Shin;Lee, Jong-Hyup
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • Wireless networks have several unique features : node mobility, restricted bandwidth, time-variable bandwidth, large latency, and high bit error rates time due to channel fading. These features at wireless networks intend to decrease the performance TCP protocols are used in wireless networks. Lots of studies have been done for finding appropriate wireless transport protocols for current wireless communications. However, related studies have not provided good performance or some protocols have a good performance only in specific circumstances. Thus, these are not suitable for general wireless circumstance. Therefore, we propose a new wireless transport protocol which provides better performance than the previous ones. And we'd like to solve a problem that previous protocols cannot maintain their connections even though they have multiple paths until another path is successfully set up. To solve these problems, a new protocol ATP-M is proposed which is designed on already known TCP-M and ATP protocols. With NS-2 computer simulation, it is shown that this newly proposed protocol has better system throughput than TCP, TCP-M and ATP protocols.

Synchronization performance optimization using adaptive bandwidth filter and average power controller over DTV system (DTV시스템에서 평균 파워 조절기와 추정 옵셋 변화율에 따른 대역폭 조절 필터를 이용한 동기 성능 최적화)

  • Nam, Wan-Ju;Lee, Sung-Jun;Sohn, Sung-Hwan;Kim, Jae-Moung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.45-53
    • /
    • 2007
  • To recover transmitted signal perfectly at DTV receiver, we have to acquire carrier frequency synchronization to compensate pilot signal which located in wrong position and rotated phase. Also, we need a symbol timing synchronization to compensate sampling timing error. Conventionally, to synchronize symbol timing, we use Gardner's scheme which used in multi-level signal. Gardner's scheme is well known for its sampling the timing error signal from every symbol and it makes easy to detect and keep timing sync in multi-path channel. In this paper, to discuss the problem when the received power level is out of range and we cannot get synchronization information. With this problem, we use 2 step procedures. First, we put a received signal power compensation block before Garder's timing error detector. Second, adaptive loop filter to get a fast synchronization information and averaging loop filter's output value to reduce the amount of jitter after synchronization in PLL(Phased Locked Loop) circuit which is used to get a carrier frequency synchronization and symbol timing synchronization. Using the averaging value, we can estimate offset. Based on offset changing ratio, we can adapt adaptive loop filter to carrier frequency and symbol timing synchronization circuit.

A study of mitigated interference Chaotic-OOK system in IEEE802.15.4a (IEEE 802.15.4a 채널환경하에서의 저간섭 Chaotic OOK 무선통신기술의 BER 성능분석에 관한 연구)

  • Jeong, Jae-Ho;Park, Goo-Man;Jeon, Tae-Hyun;Seo, Bo-Seok;Kwak, Kyung-Sup;Jang, Yeong-Min;Choi, Sang-Yule;Cha, Jae-Sang
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.148-158
    • /
    • 2007
  • Recently, IEEE 802.15.4a(low-rate UWB) technique has been paid much attention to the LR-UWB communication system for WPAN. However, there are various interferences such as MPI(Multi Path Interference) or IPI(Inter Piconet Interference) in IEEE 802.15.4a wireless channel. In order to cancel various interferences occurred to WPAN environment, in this paper, we propose a UWB wireless communication system with high QoS(Quality of Service) which is a chaotic-OOK(On-Off Keying) system using unipolar ZCD(Zero Correlation Duration) spreading code in physical layer level. Furthermore, we analyze its performance via simulations and verify the availability of proposed system with prototype implementation.

A 0.18-μm CMOS Baseband Circuits for the IEEE 802.15.4g MR-OFDM SUN Standard (IEEE 802.15.4g MR-OFDM SUN 표준을 지원하는 0.18-μm CMOS 기저대역 회로 설계에 관한 연구)

  • Bae, Jun-Woo;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.685-690
    • /
    • 2013
  • This paper has proposed a multi-channel and wide gain-range baseband circuit blocks for the IEEE 802.15.4g MR-OFDM SUN systems. The proposed baseband circuit blocks consist of two negative-feedback VGAs, an active-RC 5th-order chebyshev low-pass-filter, and a DC-offset cancellation circuit. The proposed baseband circuit blocks provide 1 dB cut-off frequencies of 100 kHz, 200 kHz, 400 kHz, and 600 kHz respectively, and achieve a wide gain-range of +7 dB~+84 dB with 1 dB step. In addition, a DC-offset cancellation circuit has been adopted to mitigate DC-offset problems in direct-conversion receiver. Simulation results show a maximum input differential voltage of $1.5V_{pp}$ and noise figure of 42 dB and 37.6 dB at 5 kHz and 500 kHz, respectively. The proposed I-and Q-path baseband circuits have been implemented in $0.18-{\mu}m$ CMOS technology and consume 17 mW from a 1.8 V supply voltage.

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.