DOI QR코드

DOI QR Code

Development and Application of IoT-based Contactless Ultraosonic System

IoT 기반 비접촉 초음파 측정 시스템 개발 및 적용

  • Received : 2020.04.14
  • Accepted : 2020.05.21
  • Published : 2020.06.30

Abstract

The main objective of this research to develop an IoT based wireless contactless ultrasonic system (ICUS) and its application to concrete structure. The developed system consists of 16 mems, 2Mhz digitizer, amplifying circuit, FPGA, and wifi module, enabling to measure leaky surface waves from concrete specimens without physical coupling process and wires. Multi-channel analysis is performed to improve the accuracy of data analysis, and the velocity of leaky surface waves and acoustics are derived. Field inspection of railroad concrete sleepers is conducted to evaluate the performance of the system and to compare the results with conventional ultrasonic pulse velocity (UPV). As a result of the field inspection, UPV was limited to evaluate damages. This is because crack pattern of railroad sleepers is parallel to ultrasonic ray path and accessibility of the railroad at the field is disadvantageous to contact-based UPV. On the other hand, ICUS possibly detect the damages as reduction of dynamic modulus by up to 59% compared to non-damaged specimen.

본 연구의 목적은 IoT기반 무선 비접촉 콘크리트 시스템(ICUS)을 개발하고 이를 성능 평가하는데 있다. 개발된 시스템은 16개의 MEMS, 2Mhz의 digitizer, 증폭 회로, FPGA 및 wifi 모듈로 구성되어 있으며 무선 측정 시스템으로 콘크리트의 누설되는 표면파를 측정한다. 데이터 분석은 신호의 정확성을 높이기 위해 다중 채널 분석을 수행하였으며 이를 통해 누설 표면파 및 음향의 속도를 도출할 수 있다. 시스템의 성능을 평가하기 위해 기존의 초음파 전달속도 시험( UPV)과 결과비교 하였으며 이는 철도 현장의 콘크리트 침목에서 수행되었다. 시험 결과, 초음파 전달속도 시험(UPV)을 통해 균열을 검출하는 것은 침목의 균열 형태와 초음파 경로가 평행하거나 접촉식으로 현장 적용의 한계가 있음을 확인할 수 있었다. 하지만 개발된 IoT기반 비접촉 초음파 시스템(ICUS)은 손상되지 않은 침목에 비해 동탄성계수가 최대 59%감소하는 것을 확인할 수 있었다. 이를 통해 개발된 시스템의 표면파 신호 분석은 현장에서 균열을 평가하는데 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Special act on the safety management of facilities, Korea Ministry of Government Legislation, Vol. 16497
  2. Kim, Y. C., Shim, G. S., Kwon, S. G., Park, S. B., Back, I. C.,"Investigaion for defect status of PSC sleeper on ballast track of high-speed railroad", 2017 Conference Proceeding Paper of the Korean Society For Railway, Busan, pp. 1039-1043, 2017.
  3. Bae,Y., Bae, J. H., Kim, M. C., Jang, S. Y.,"Flexural strength of cracked prestressed concrete sleepers used on gyeonbu high speed line", Journal of the Korean Society for Railway, 21(9), pp.900-915, 2018. https://doi.org/10.7782/jksr.2018.21.9.900
  4. Kim, J., Bae, Y., Yi, N., "Delayed ettringite formation damage in prestressed concrete sleepers on gyeonbu high speed line", Journal of the Korean Society for Railway, 23(2), pp. 97-108, 2020. https://doi.org/10.7782/jksr.2020.23.2.97
  5. KS F 2730, Testing method for rebound number to conclude compressive strength of concrete, KSA .
  6. KS F 2418, Standard test method for ultrasonic velocity of concrete, KSA.
  7. Malhotra, V. M., Carino, N. J., Handbook on nondestructive testing of concrete ASTM. 2nd ed. CRC Press, 2004.
  8. Zhu, J. "Non-contact NDT of concrete structures using air-coupledsensors", Doctoral dissertation, Univ. of Illinois Urbana-Champaign, UrbanaChampaign, IL, 2005.
  9. Ryden, N., Lowe, M. J. S. and Cawley, P., "Non-contact surface wave scanning of pavements using a rolling microphone array", Review of Progress in Quantitative Nondestructive Evaluation, vol. 27a and 27b, 975, Thompson DO, Chimenti DE, eds., Amer Inst Physics, Melville, pp. 1328-1332, 2008. https://doi.org/10.1063/1.2902588
  10. Kee, S. H., Oh. T., Popovics, J. S., Arndt, R. W. and Zhu, J. "Nondestructive bridge deck testing with air-coupled impact-echo and infrared thermography", Journal of bridge engineering ASCE, 17(6), inpress, 2012.
  11. Viktorov, I.A. "Rayleigh and Lamb Waves - Physical Theory and Applications", Plenum Press, New York, 1967.
  12. Chung, C., Suraneni, P., Popovics, J. S. and Struble, L. J., "Setting time measurement using ultrasonic wave reflection", ACI Materials Journal, 19(12), pp. 109-117, 2012.
  13. Oh, T., Kee, S. H., Arndt, R., Popovics, J. S. and Zhu, J., "Comparison of NDT Methods for Assessment of a Concrete Bridge Deck", Journal of Engineering Mechanics, Vol. 139, Issue 3, pp. 305-314, 2013. https://doi.org/10.1061/(asce)em.1943-7889.0000441
  14. Choi, H., Hmin, S., Tran, Q., Roesler, J. R. and Popovics, J. S., "Contactless system for continuous monitoring of early-age concrete properties", Construction International, Vol.38, Issue 9, pp. 38-41, 2016.