• Title/Summary/Keyword: multi-nozzle

Search Result 203, Processing Time 0.026 seconds

A Study on the Development of an Automatic Multi-Nozzle Injection Molding Machine (Multi-Nozzle Injection Molding Automatic Machine 개발에 관한 연구)

  • Lee, Jong-Hyung;Kim, Jung-Hwan;Yi, Chang-Heon;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Chun-Kon;Kwon, Yung-Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.123-128
    • /
    • 2007
  • The demand for the precision rubber products has been rapidly increasing with the recent growth of industries. And the requirement for the productivity and the quality calls out for the injection molding machines with the precision machining ability as well as the high productivity. Especially modern automobile industry is in urgent need of developing injection molding machines for the high quality rubber products with high productivity. And the inability of the domestic companies to meet the standards causes importing foreign machines and as a result spending good amount of dollars. It is extremely important to develop competitive machines and strengthen the infrastructure of the related industries. In this paper the functions and the structure of a automatic multi-nozzle injection molding machine has been studied to set up a proper test system for the precision rate and the reliability of the machines, which can help build the machines to meet the request of the industry.

  • PDF

Effect of a Multi Air-staged Burner on NOx Formation and Heat Transfer in Furnace Adopted the Reburning Process (재연소 과정을 적용한 연소로에서 공기 다단 연소기의 NOx 발생 및 열전달에 대한 효과)

  • Kim, Hyuk-Su;Baek, Seung-Wook;Lee, Chang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.842-849
    • /
    • 2006
  • An experimental study has been conducted to investigate the effects of a multi air-staged burner on NOx formation and heat transfer in a 15kW large-scale laboratory furnace adopted the reburning process. The reburn fuel as well as burnout air was injected from each nozzle attached at the wall of the cylindrical furnace. Fuel in both main burner and reburn nozzle was LPG (Liquefied Petroleum Gas). The paper reports the influences on NOx reduction of reburn fuel fraction in reburning zone. Temperature distribution inside the overall region as well as total heat flux at the wall of the furnace has been measured to examine the heat transfer characteristics due to the reburning process. For comparison, the reburning effects were examined for a combustor with two types of burner; a regular single staged burner and a multi-air staged burner. A gas analysis was also performed to evaluate an appropriate condition for NOx emission in a primary zone for the excess air ratio of 1.1. As a result, combustion efficiency expected to become more efficient due to the reduction of heat loss in burnout zone decrease when multi air-staged burner in furnace adopted reburning technology was used.

Development of a Synchronization Test System for a Variable Nozzle (가변노즐의 동기화시험장치 개발)

  • Park, Dong-Chang;Lee, Sang-Youn;Lee, Ju-Young;Yun, Su-Jin;Cho, Sung-Won;Youn, Hyun-Gul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.130-131
    • /
    • 2011
  • In the present work, a synchronization test system for variable nozzle is described. Variable nozzles are used to enhance the effectiveness of aircraft engines at various altitudes. The synchronization test system was developed to verify the dynamic characteristics and synchronization of variable nozzle mechanism including flaps. The system with a variable nozzle was analyzed, before its fabrication, by a multi-body dynamics analysis software RecurDyn. The newly developed test system is being used to show the synchronization capability of a variable nozzle system.

  • PDF

A Computational Study on the Unsteady Lateral Loads in a Rocket Nozzle

  • Nagdewe, Suryakant;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.289-292
    • /
    • 2008
  • Highly over-expanded nozzle of the rocket engines will be excited by non-axial forces due to flow separation at sea level operations. Since rocket engines are designed to produce axial thrust to power the vehicle, non-axial static and/or dynamic forces are not desirable. Several engine failures were attributed to the side loads. Present work investigate the unsteady flow in an over-expanded rocket nozzle in order to estimate side load during a shutdown/starting. Numerical computations has been carried out with density based solver on multi-block structured grid. Present solver is explicit in time and unsteady time step is calculated using dual time step approach. AUSMDV is considered as a numerical scheme for the flux calculations. One equation Spalart-Allmaras turbulence model is selected. Results presented here is for two nozzle pressure ratio i.e. 100 and 20. At 100 NPR, restricted shock separation (RSS) pattern is observed while, 20 NPR shows free shock separation (FSS) pattern. Side load is observed during the transition of separation pattern at different NPR.

  • PDF

An Overview of Liquid Spray Modeling Formed by High-Shear Nozzle/Swirler Assembly

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.726-739
    • /
    • 2003
  • A multi-dimensioanl model is being increasingly used to predict the thermo-flow field in the gas turbine combustor. This article addresses an integrated survey of modeling of the liquid spray formation and fuel distribution in gas turbine with high-shear nozzle/swirler assembly. The processes of concern include breakup of a liquid jet injected through a hole type orifice into air stream, spray-wall interaction and spray-film interaction, breakup of liquid sheet into ligaments and droplet,5, and secondary droplet breakup. Atomization of liquid through hole nozzle is described using a liquid blobs model and hybrid model of Kelvin-Helmholtz wave and Rayleigh-Taylor wave. The high-speed viscous liquid sheet atomization on the pre-filmer is modeled by a linear stability analysis. Spray-wall interaction model and liquid film model over the wall surface are also considered.

Optimization of Screw Pumping System (SPS) for Mass Production of Entrapped Bifidus

  • Ryu, Ji-Sung;Lee, Yoon-Jong;Choi, Soo-Im;Lee, Jae-Won;Heo, Tae-Ryeon
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.566-571
    • /
    • 2005
  • Process of screw-pumping system (SPS) was optimized for mass production of encapsulated bifidus. SPS entrapment device was composed of feeding component, with optimized nozzle size and length of 18G (0.91 cm) and 4 mm, respectively, screw pump, and 37-multi-nozzle. Screw component had five wing turns [radius (r)=26 to 15 mm] from top to bottom of axis at 78-degree angle from middle of the screw, and two wings were positioned at screw edge to push materials toward nozzle. For nozzle component, 37 nozzles were attached to 20-mm round plate. Air compressor was attached to SPS to increase productivity of encapsulated bifidus. This system could be operated with highly viscous (more than 300 cp) materials, and productivity was higher than $1128\;{\pm}\;30\;beads/min$. Viability of encapsulated bifidus was $5.45\;{\times}\;10^8\;cfu$/bead, which is superior to that of encapsulated bifidus produced by other methods ($2.51{\times}10^8\;cfu$/bead). Average diameter of produced beads was $2.048\;{\pm}\;0.003\;mm$. Survival rate of SPS-produced encapsulated bifidus was 90% for Simulator of the Human Intestinal Microbial Ecosystem test and 88% in fermented milk (for 14 days). These results show SPS is effective for use in development of economical system for mass production of viable encapsulated bifidus.

Validation of the Aerodynamic drag model in the multi-phase flow analysis

  • Morisaki, Masao;Shimada, Toru;Hanzawa, Masahisa;Kat, Takashi;Yoshikawa, Takashi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.365-368
    • /
    • 2004
  • The multi-phase flow analysis in a solid rocket motor is very important when performing the performance of a motor, and prediction of nozzle ablation. However, only in consideration of regular power, it has analyzed as power which a metal particle receives from a flow until now. We conduct analysis and an experiment about the virtual mass clause which will influence at the place where acceleration is big. We aim at the improvement in accuracy of multi-phase flow analysis from the result.

  • PDF

Screw Pumping System을 이용한 Algiante bead의 생산

  • Ryu, Ji-Seong;Lee, Yun-Jong;Yun, Yeong-Sil;Heo, Tae-Ryeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.750-753
    • /
    • 2003
  • A method for the mass production was designed by using a screw pumping system that can supply safe bifidobacteria. To prevent the inhibition of cell activity, various additives, which are able to preserve pore of an alginate bead, were used. When materials are sterilized, viscosity decreased below 300cp. Adding bifidobacteria, viscosity increased to 300cp. We manufactured various extrusion nozzles and tested mass productivity of the alginate bead. As a result, 18G, 4mm length sylinge with 13 multi-nozzle showed the best productivity which was about $308{\pm}3ea/min$.

  • PDF

Fabrication of a Thermopneumatic Valveless Micropump with Multi-Stacked PDMS Layers

  • Jeong, Ok-Chan;Jeong, Dae-Jung;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.137-141
    • /
    • 2004
  • In this paper, a thermopneumatic PMDS (polydimethlysiloxane) micropump with nozzle/diffuser elements is presented. The micropump is composed of nozzle/diffuser elements as dynamic valves, an actuator consisting of a circular PDMS diaphragm and a Cr/Au heater on a glass substrate. Four PDMS layers are used for fabrication of an actuator chamber, actuator diaphragm by a spin coating process, spacer layer, and nozzle/diffuser by the SU-8 molding process. The radius and thickness of the actuator diaphragm is 2 mm and 30 ${\mu}{\textrm}{m}$, respectively. The length and the conical angle of the nozzle/diffuser elements are 3.5 mm and 20$^{\circ}$, respectively. The actuator diaphragm is driven by the air cavity pressure variation caused by ohmic heating and natural cooling. The flow rate of the micropump in the frequency domain is measured for various duty cycles of the square wave input voltage. When the square wave input voltage of 5 V DC is applied to the heater, the maximum flow rate of the micropump is 44.6 ${mu}ell$/min at 100 Hz with a duty ratio of 80% under the zero pressure difference.

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.