• Title/Summary/Keyword: moving least squares difference method

Search Result 28, Processing Time 0.018 seconds

Analysis of Moving Boundary Problem Using Extended Moving Least Squares Finite Difference Method (확장된 이동최소제곱 유한차분법을 이용한 이동경계문제의 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.315-322
    • /
    • 2009
  • This paper presents a novel numerical method based on the extended moving least squares finite difference method(MLS FDM) for solving 1-D Stefan problem. The MLS FDM is employed for easy numerical modelling of the moving boundary and Taylor polynomial is extended using wedge function for accurate capturing of interfacial singularity. Difference equations for the governing equations are constructed by implicit method which makes the numerical method stable. Numerical experiments prove that the extended MLS FDM show high accuracy and efficiency in solving semi-infinite melting, cylindrical solidification problems with moving interfacial boundary.

A Generalized Finite Difference Method for Crack Analysis (일반화된 유한차분법을 이용한 균열해석)

  • Yoon, Young-Cheol;Kim, Dong-Jo;Lee, Sang-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.501-506
    • /
    • 2007
  • A generalized finite difference method for solving solid mechanics problems such as elasticity and crack problems is presented. The method is constructed in framework of Taylor polynomial based on the Moving Least Squares method and collocation scheme based on the diffuse derivative approximation. The governing equations are discretized into the difference equations and the nodal solutions are obtained by solving the system of equations. Numerical examples successfully demonstrate the robustness and efficiency of the proposed method.

  • PDF

Implicit Moving Least Squares Difference Method for 1-D Moving Boundary Problem (1차원 자유경계문제의 해석을 위한 Implicit 이동최소제곱 차분법)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.439-446
    • /
    • 2012
  • This paper presents an implicit moving least squares(MLS) difference method for improving the solution accuracy of 1-D free boundary problems, which implicitly updates the topology change of moving interface. The conventional MLS difference method explicitly updates the moving interface; it requires no iterative solution procedure but results in the loss of accuracy. However, the newly developed implicit scheme makes the total system nonlinear involving iterative solution procedure, but numerical verification show that it dramatically elevates the solution accuracy with moderate computation increase. Through numerical experiments for melting problems having moving singularity, it is verified that the proposed method can achieve the second order accuracy.

Heat Transfer Analysis of Bi-Material Problem with Interfacial Boundary Using Moving Least Squares Finite Difference Method (이동최소제곱 유한차분법을 이용한 계면경계를 갖는 이종재료의 열전달문제 해석)

  • Yoon, Young-Cheol;Kim, Do-Wan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.779-787
    • /
    • 2007
  • This paper presents a highly efficient moving least squares finite difference method (MLS FDM) for a heat transfer problem of bi-material with interfacial boundary. The MLS FDM directly discretizes governing differential equations based on a node set without a grid structure. In the method, difference equations are constructed by the Taylor polynomial expanded by moving least squares method. The wedge function is designed on the concept of hyperplane function and is embedded in the derivative approximation formula on the moving least squares sense. Thus interfacial singular behavior like normal derivative jump is naturally modeled and the merit of MLS FDM in fast derivative computation is assured. Numerical experiments for heat transfer problem of bi-material with different heat conductivities show that the developed method achieves high efficiency as well as good accuracy in interface problems.

Moving Least Squares Difference Method for the Analysis of 2-D Melting Problem (2차원 융해문제의 해석을 위한 이동최소제곱 차분법)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2013
  • This paper develops a 2-D moving least squares(MLS) difference method for Stefan problem by extending the 1-D version of the conventional method. Unlike to 1-D interfacial modeling, the complex topology change in 2-D domain due to arbitrarily moving boundary is successfully modelled. The MLS derivative approximation that drives the kinetics of moving boundary is derived while the strong merit of MLS Difference Method that utilizes only nodal computation is effectively conserved. The governing equations are differentiated by an implicit scheme for achieving numerical stability and the moving boundary is updated by an explicit scheme for maximizing numerical efficiency. Numerical experiments prove that the MLS Difference Method shows very good accuracy and efficiency in solving complex 2-D Stefan problems.

Extended MLS Difference Method for Potential Problem with Weak and Strong Discontinuities (복합 불연속면을 갖는 포텐셜 문제 해석을 위한 확장된 MLS 차분법)

  • Yoon, Young-Cheol;Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.577-588
    • /
    • 2011
  • This paper provides a novel extended Moving Least Squares(MLS) difference method for the potential problem with weak and strong discontinuities. The conventional MLS difference method is enhanced with jump functions such as step function, wedge function and scissors function to model discontinuities in the solution and the derivative fields. When discretizing the governing equations, additional unknowns are not yielded because the jump functions are decided from the known interface condition. The Poisson type PDE's are discretized by the difference equations constructed on nodes. The system of equations built up by assembling the difference equations are directly solved, which is very efficient. Numerical examples show the excellence of the proposed numerical method. The method is expected to be applied to various discontinuity related problems such as crack problem, moving boundary problem and interaction problems.

Analysis of Dynamic Crack Propagation using MLS Difference Method (MLS 차분법을 이용한 동적균열전파 해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents a dynamic crack propagation algorithm based on the Moving Least Squares(MLS) difference method. The derivative approximation for the MLS difference method is derived by Taylor expansion and moving least squares procedure. The method can analyze dynamic crack problems using only node model, which is completely free from the constraint of grid or mesh structure. The dynamic equilibrium equation is integrated by the Newmark method. When a crack propagates, the MLS difference method does not need the reconstruction of mode model at every time step, instead, partial revision of nodal arrangement near the new crack tip is carried out. A crack is modeled by the visibility criterion and dynamic energy release rate is evaluated to decide the onset of crack growth together with the corresponding growth angle. Mode I and mixed mode crack propagation problems are numerically simulated and the accuracy and stability of the proposed algorithm are successfully verified through the comparison with the analytical solutions and the Element-Free Galerkin method results.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

Intrinsic Enrichment of Moving Least Squares Finite Difference Method for Solving Elastic Crack Problems (탄성균열 해석을 위한 이동최소제곱 유한차분법의 내적확장)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.457-465
    • /
    • 2009
  • This study presents a moving least squares (MLS) finite difference method for solving elastic crack problems with stress singularity at the crack tip. Near-tip functions are intrinsically employed in the MLS approximation to model near-tip field inducing singularity in stress field. employment of the functions does not lose the merit of the MLS Taylor polynomial approximation which approximates the derivatives of a function without actual differentiating process. In the formulation of crack problem, computational efficiency is considerably improved by taking the strong formulation instead of weak formulation involving time consuming numerical quadrature Difference equations are constructed on the nodes distributed in computational domain. Numerical experiments for crack problems show that the intrinsically enriched MLS finite difference method can sharply capture the singular behavior of near-tip stress and accurately evaluate stress intensity factors.

Heat Transfer Analysis of Composite Materials Using MLS Finite Difference Method (MLS 유한차분법을 이용한 복합재료의 열전달문제 해석)

  • Yoon, Young-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.2-7
    • /
    • 2008
  • A highly efficient moving least squares finite difference method (MLS FDM) for heat transfer analysis of composite material with interface. In the MLS FDM, governing differential equations are directly discretized at each node. No grid structure is required in the solution procedure. The discretization of governing equations are done by Taylor expansion based on moving least squares method. A wedge function is designed for the modeling of the derivative jump across the interface. Numerical examples showed that the numerical scheme shows very good computational efficiency together with high aocuracy so that the scheme for heat transfer problem with different heat conductivities was successfully verified.

  • PDF