• Title/Summary/Keyword: motor protein

Search Result 137, Processing Time 0.018 seconds

Kinesin Superfamily-associated Protein 3 (KAP3) Mediates the Interaction between Kinesin-II Motor Subunits and HS-1-associated Protein X-1 (HAX-1) through Direct Binding (Kinesin superfamily-associated protein 3 (KAP3)를 통한 HS-1-associated protein X-1 (HAX-1)과 Kinesin-II의 결합)

  • Jang, Won Hee;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.978-983
    • /
    • 2013
  • Kinesin-II, a molecular motor, consists of two different motor subunits, KIF3A and KIF3B, and one large kinesin superfamily-associated protein 3 (KAP3), forming a heterotrimeric complex. KAP3 is associated with the tail domains of motor subunits. However, its exact role remains unclear. Here, we demonstrated KAP3 binding to the carboxyl (C)-terminal tail region of HS-associated protein X-1 (HAX-1). HAX-1 bound to the C-terminal region of KAP3, but not to KIFs (KIF3A, KIF3B, and KIF5B) and the kinesin light chain (KLC) in the yeast two-hybrid assays. The interaction was further confirmed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti- HAX-1 antibody as well as anti-KIF3A antibody co-immunoprecipitated KIF3B and KAP3 from mouse brain extracts. These results suggest that KAP3 could mediate the interaction between Kinesin-II and HAX-1.

Detection of the Recombinant MotX Protein Vibrio fluvialis in Escherichia coli with Immuno-Gold Labeling Method (Immuno Gold 표지법을 이용한 대장균내 Vibrio fluvialis MotX 단백질의 존재 부위 결정)

  • LEE Jong Hee;Park Jae Hyun;Kim Sun Hoi;An Sun Hee;Kong In Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.451-453
    • /
    • 2002
  • The rotation of the flagellar motor is powered by the electrochemical gradient of specific ions across the cytoplasmic membrane. Recently, the gents of the Na'-driven motor have been cloned from marine bacterium of Vibrio sp. and some of the motor proteins have been purified and characterized. Also, motx gene encoding a channel component of the sodium type flagellar motor was identified from Vibrio Huuiaiis (KTCC 2473). The amino acid sequence of MotX protein from V, Huvialis shared 90, 85, $85\%$ identity with V, cholerae, V. alginolyticus, V parahaemolyticus, respectively. We have studied the localization of the expressed MotX protein in Escherichia coli by immune-gold labeling of ultra-thin frozen section. Our observation of the expressed protein indicated that MotX protein could be existed as attachment to inner membrane in E. coli.

Specific kinesin and dynein molecules participate in the unconventional protein secretion of transmembrane proteins

  • Sung Ho Eun;Shin Hye Noh;Min Goo Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.5
    • /
    • pp.435-447
    • /
    • 2024
  • Secretory proteins, including plasma membrane proteins, are generally known to be transported to the plasma membrane through the endoplasmic reticulum-to-Golgi pathway. However, recent studies have revealed that several plasma membrane proteins and cytosolic proteins lacking a signal peptide are released via an unconventional protein secretion (UcPS) route, bypassing the Golgi during their journey to the cell surface. For instance, transmembrane proteins such as the misfolded cystic fibrosis transmembrane conductance regulator (CFTR) protein and the Spike protein of coronaviruses have been observed to reach the cell surface through a UcPS pathway under cell stress conditions. Nevertheless, the precise mechanisms of the UcPS pathway, particularly the molecular machineries involving cytosolic motor proteins, remain largely unknown. In this study, we identified specific kinesins, namely KIF1A and KIF5A, along with cytoplasmic dynein, as critical players in the unconventional trafficking of CFTR and the SARS-CoV-2 Spike protein. Gene silencing results demonstrated that knockdown of KIF1A, KIF5A, and the KIF-associated adaptor protein SKIP, FYCO1 significantly reduced the UcPS of △F508-CFTR. Moreover, gene silencing of these motor proteins impeded the UcPS of the SARS-CoV-2 Spike protein. However, the same gene silencing did not affect the conventional Golgi-mediated cell surface trafficking of wild-type CFTR and Spike protein. These findings suggest that specific motor proteins, distinct from those involved in conventional trafficking, are implicated in the stress-induced UcPS of transmembrane proteins.

The β Subunit of Heterotrimeric G Protein Interacts Directly with Kinesin Heavy Chains, Kinesin-I (Kinesin-I의 kinesin heavy chains과 직접 결합하는 heterotrimeric G protein의 β subunit의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1166-1172
    • /
    • 2010
  • Kinesin-I exists as a tetramer of two heavy chains (KHCs, also called KIF5s), which contain the amino (N)-terminal motor domain and carboxyl (C)-terminal domain, as well as two light chains (KLCs), which bind to the KIF5s (KIF5A, KIF5B and KIF5C) stalk region. To identify the interaction proteins for KIF5A, yeast two-hybrid screening was performed and a specific interaction with the ${\beta}$ subunit of heterotrimeric G proteins ($G{\beta}$) was found. $G{\beta}$ bound to the amino acid residues between 808 and 935 of KIF5A and to other KIF5 members in the yeast two-hybrid assay. The WD40 repeat motif of $G{\beta}$ was essential for interaction with KIF5A. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KIF5s specifically co-immunoprecipitated KIF5s associated with heterotrimeric G proteins from mouse brain extracts. These results suggest that kinesin-I motor protein transports heteroterimeric G protein attachment vesicles along microtubules in the cell.

Direct Interaction of KIF5s and Actin-Based Transport Motor, Myo9s (KIF5s와 직접 결합하는 액틴 결합 운동단백질 Myo9s의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1076-1082
    • /
    • 2011
  • Microtubule-based kinesin motor proteins are used for long-range vesicular transport. KIF5s (KIF5A, KIF5B and KIF5C) mediate the transport of various membranous vesicles along microtubules, but the mechanism behind how they recognize and bind to a specific cargo has not yet been completely elucidated. To identify the interaction protein for KIF5B, yeast two-hybrid screening was performed and a specific interaction with the unconventional myosin Myo9b, an actin-based vesicle transport motor, was found. The GTPase-activating protein (GAP) domain of Myo9s was essential for interaction with KIF5B in the yeast two-hybrid assay. Myo9b bound to the carboxyl-terminal region of KIF5B and to other KIF5 members. In addition, glutathione S-transferase (GST) pull-downs showed that Myo9s specifically interact to the complete Kinesin-I complex. An antibody to KIF5B specifically co-immunoprecipitated KIF5B associated with Myo9s from mouse brain extracts. These results suggest that kinesin-I motor protein interacts directly with actin-based motor proteins in the cell.

Effect of Bee Venom on Glutamate-mediated Excitotoxicity in NSC-34 Motor Neuronal Cells (Glutamate 매개 흥분성 신경독성에 대한 봉독의 NSC-34 신경세포사멸 억제 효과)

  • Lee, Sang-Min;Choi, Sun-Mi;Jung, So-Young;Yang, Eun-Jin
    • YAKHAK HOEJI
    • /
    • v.55 no.5
    • /
    • pp.385-390
    • /
    • 2011
  • Bee venom (BV), which is extracted from honeybees, has been used in traditional Korean medical therapy. Glutamate-mediated excitotoxicity contributes to neuronal death in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) or Alzheimer's disease (AD). This study is to investigate the effect of BV on glutamate-induced neurotoxicity on NSC-34 motor neuron cells. To determine the viability of motor neuronal cells, we performed with MTT assays in glutamate-treated NSC-34 cell with BV or without. For the measurement of oxidative stress, DCF assay was used in glutamate-treated NSC-34 motor neuronal cells with BV or without. To investigate the molecular mechanism of BV against glutamate-mediated neurotoxicity in NSC-34 cells, western blot analysis was used. Glutamate significantly decreased cell viability by glutamate dose- or treatment time-dependent manner in NSC-34 cells. However, BV pre-treatment dramatically inhibited glutamate-induced neuronal cell death. Furthermore, we found that BV increased the expression of Bcl-2 protein that is anti-apoptotic protein and reduced the generation of oxidative stress. BV has a neuroprotective role against glutamate neurotoxicity by an increase of anti-apoptotic protein. It suggests that BV may be useful for the reduction of neuronal cell death in neuronal disease models.

The Role of Survival Motor Neuron Protein associated with Function of Spinal Motor Neuron (척수 운동신경원의 기능과 관련된 생존운동신경원 단백질의 역할)

  • Song, Ju-Young;Kown, Young-Shil;Nam, Ki-Won;Song, Ju-Min;Kim, Dong-Hyun;Kim, Suk-Bum;Moon, Dong-Chul;Choi, Ji-Ho;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.433-444
    • /
    • 2001
  • This review highlights the ontogenesis and the differentiation of motor neuron in spinal cord, and introduce the survival motor neuron(SMN) which is associated with growth and survival of motor neurons. The differentiation of floor plate cells and motor neurons in the vertebrate neural tube appears to be induced by signals from the notochord. This signal is Sonic hedgehog(Shh). The early development of motor neurons involves the inductive action of Shh. The SMN gene is essential for embryonic viability. SMN mRNA is also expressed in virtually all cell types in spinal cord, including large motor neurons. The SMN protein is involved in RNA processing and during early embryonic development is necessary fer cell survival. Two SMN genes are present in 5q 13 in humans: the telomeric gene(SMNt), which is the SMA-determining gene, and the centromeric analog gene(SMNc). The majority of transcripts from the SMNt gene are full length but, major transcripts of the SMNc gene have a high degrees of alternative splicing and tend to have little or no exon 7. The SMN is involved in the RNA processing(the biogenesis of snRNPs and pre-mRNA splicing), the anti-apoptotic effects, and regulating gene expression.

  • PDF

Protective Effects of Cornu Saigae Tataricae Extracts on Cultured Spinal Motor Neurons Damaged by Oxygen Free Radical (산소자유기에 의한 척수운동세포 독성에 대한 영양각 추출물의 방어효과)

  • Kang Gil Seong;Kwon Kang Beom;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1202-1207
    • /
    • 2003
  • In order to clarify the neuroprotective effect of Cornu Saigae Tataricae(CST) water extract on cultured mouse spinal motor neuron damaged by hydrogen peroxide (H₂O₂), MTT [3-(4,5-dimethylthiazole-2-yl)- 2,5-diphenyltetrazolium bromide] assay, LDH (Lactate Dehydrogenase) activity assay and SRB (Sulforhodamine B) assay were carried out after the cultured mouse spinal motor neuron were preincubated with various concentrations of CST water extract for 3 hours prior to exposure of hydrogen peroxide Cell viability of cultured mouse spinal motor neurons exposed to various concentrations of hydrogen peroxide for 6 hours was decreased in a dose-dependent manner. MTT50 values were 40 uM hydrogen peroxide. Cultured mouse spinal motor neurons in the medium containing various concentration of hydrogen peroxide for 6 hours showed increasing of LDH activity and decreasing of total protein synthesis. We know that hydrogen peroxide was toxic on cultured spinal motor neurons. Pretreatment of CST water extract for 3 hours following hydrogen peroxide prevented the hydrogen peroxide-induced neurotoxicity such as increasing of LDH activity and decreasing of total protein synthesis. These results suggest that hydrogen peroxide shows toxic effect on cultured spinal motor neurons and CST water extract is highly effective in protecting the neurotoxicity induced by hydrogen peroxide.

Interaction of CLIP-170, a Regulator of Microtubule Plus End Dynamics, with Kinesin 1 via KIF5s (미세소관의 plus end dynamics를 조절하는 CLIP-170과 kinesin 1의 KIF5s를 통한 결합)

  • Jang, Won Hee;Jeong, Young Joo;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.673-679
    • /
    • 2017
  • Microtubules are long rods in the cytoplasm of cells that plays a role in cell motility and intracellular transport. Microtubule-based transport by motor proteins is essential in intracellular transport. Kinesin 1 is a molecular motor protein that mediates the intracellular transport of various membranous vesicles, mRNAs, and proteins along microtubules. It is comprised of two heavy chains (KHCs, also called KIF5s) and two light chains (KLCs). KIF5s bear a motor domain in their amino (N)-terminal regions and interact with various cargoes through the cargo-binding domain in their carboxyl (C)-terminal regions. To identify proteins interacting with KIF5B, yeast two-hybrid screening was performed, and a specific interaction with the cytoplasmic linker protein 170 (CLIP-170), a plus end microtubule-binding protein, was found. The coiled-coil domain of CLIP-170 is essential for interactions with KIF5B in the yeast two-hybrid assay. CLIP-170 bound to the cargo-binding domain of KIF5B. Also, other KIF5s, KIF5A and KIF5C, interacted with CLIP-170 in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5s specifically interacted with CLIP-170. An antibody to KIF5B specifically co-immunoprecipitated CLIP-170 associated with KIF5B from mouse brain extracts. These results suggest that kinesin 1 motor protein may transport CLIP-170 in cells.

The Regulation Mechanisms of Kinesin Motor Proteins (Kinesin 모터 단백질의 조절 기전)

  • Park, Sang Jun;Seog, Joung-Su;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.840-848
    • /
    • 2017
  • Proper intracellular transport is essential for normal cell function. Intracellular transport is mediated by microtubule-dependent molecular motor proteins, as well as kinesin and cytoplasmic dynein, which move their cargo along long, microtubule tracks in cells. Kinesins are ATP-dependent plus-end-directed motor proteins in the intracellular transport of organelles, vesicles, RNA complexes, and protein complexes. The mislocalization of these different types of cargo has been linked to cell dysfunction and degeneration. The cargo transport of kinesins can be described by the following steps: binding to the appropriate cargo and/or adaptor proteins, activation of the kinesin's motility and movement along the microtubule, and the release of the cargo at the correct destination. Recently, several studies have revealed the mechanisms for the regulation of kinesin motor activity, including cargo loading and unloading. Intracellular cargo transport is also modulated by adaptor proteins, which link the kinesins to their cargo. The regulatory proteins, which include protein kinases and phosphatases, regulate kinesin motor activity directly through the phosphorylation or dephosphorylation of kinesins and indirectly through the modification of adaptor proteins, such as c-Jun NH-terminal kinase-interacting proteins, or of the microtubule network. These findings lay the groundwork for understanding how kinesins are differentially engaged in intracellular cargo transport. In addition, understanding the regulatory mechanisms of each kinesin is an area of key interest within cell biology and neurophysiology. In this study, we reviewed kinesins' regulation proteins and discuss how their regulation affects cargo recognition and transport.