Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.6.673

Interaction of CLIP-170, a Regulator of Microtubule Plus End Dynamics, with Kinesin 1 via KIF5s  

Jang, Won Hee (Department of Biochemistry, Inje University College of Medicine)
Jeong, Young Joo (Department of Biochemistry, Inje University College of Medicine)
Lee, Won Hee (Department of Neurosurgery, Inje University College of Medicine)
Kim, Mooseong (Department of Neurosurgery, Inje University College of Medicine)
Kim, Sang-Jin (Department of Neurology, Inje University College of Medicine)
Urm, Sang-Hwa (Department of Preventive Medicine, Inje University College of Medicine)
Seog, Dae-Hyun (Department of Biochemistry, Inje University College of Medicine)
Publication Information
Journal of Life Science / v.27, no.6, 2017 , pp. 673-679 More about this Journal
Abstract
Microtubules are long rods in the cytoplasm of cells that plays a role in cell motility and intracellular transport. Microtubule-based transport by motor proteins is essential in intracellular transport. Kinesin 1 is a molecular motor protein that mediates the intracellular transport of various membranous vesicles, mRNAs, and proteins along microtubules. It is comprised of two heavy chains (KHCs, also called KIF5s) and two light chains (KLCs). KIF5s bear a motor domain in their amino (N)-terminal regions and interact with various cargoes through the cargo-binding domain in their carboxyl (C)-terminal regions. To identify proteins interacting with KIF5B, yeast two-hybrid screening was performed, and a specific interaction with the cytoplasmic linker protein 170 (CLIP-170), a plus end microtubule-binding protein, was found. The coiled-coil domain of CLIP-170 is essential for interactions with KIF5B in the yeast two-hybrid assay. CLIP-170 bound to the cargo-binding domain of KIF5B. Also, other KIF5s, KIF5A and KIF5C, interacted with CLIP-170 in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5s specifically interacted with CLIP-170. An antibody to KIF5B specifically co-immunoprecipitated CLIP-170 associated with KIF5B from mouse brain extracts. These results suggest that kinesin 1 motor protein may transport CLIP-170 in cells.
Keywords
Cargo; CLIP-170; kinesin 1; microtubule; microtubule motor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., Kawagishi, M. and Hirokawa, N. 2002. Glutamate-receptorinteractingprotein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87.   DOI
2 Boscheron, C., Caudron, F., Loeillet, S., Peloso, C., Mugnier, M., Kurzawa, L., Nicolas, A., Denarier, E., Aubry, L. and Andrieux, A. 2016. A role for the yeast CLIP170 ortholog, the plus-end-tracking protein Bik1, and the Rho1 GTPase in Snc1 trafficking. J. Cell Sci. 129, 3332-3341.   DOI
3 Brady, S. T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73-75.   DOI
4 Browning, H., Hackney, D. D. and Nurse, P. 2003. Targeted movement of cell end factors in fission yeast. Nat. Cell Biol. 5, 812-818.   DOI
5 Busch, K. E., Hayles, J., Nurse, P. and Brunner, D. 2004. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell 6, 831-843.   DOI
6 Carvalho, P., Tirnauer, J. S. and Pellman, D. 2003. Surfing on microtubule ends. Trends Cell Biol. 13, 229-237.   DOI
7 Caudron, F., Andrieux, A., Job, D. and Boscheron, C. 2008. A new role for kinesin-directed transport of Bik1p (CLIP- 170) in Saccharomyces cerevisiae. J. Cell Sci. 121, 1506-1513.   DOI
8 Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S. and Hirokawa, N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384.   DOI
9 Maekawa, H. and Schiebel, E. 2004. CLIP-170 family members: a motor-driven ride to microtubule plus ends. Dev. Cell 6, 746-748.   DOI
10 Muresan, Z. and Muresan, V. 2005. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 171, 615-625.   DOI
11 Nakajima, K., Yin, X., Takei, Y., Seog, D. H., Homma, N. and Hirokawa, N. 2012. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 76, 945-961.   DOI
12 Nirschl, J. J., Magiera, M. M., Lazarus, J. E., Janke, C. and Holzbaur, E. L. 2016. ${\alpha}$-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14, 2637-2652.   DOI
13 Hirokawa, N., Niwa, S. and Tanaka, Y. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638.   DOI
14 Pierre, P., Scheel, J., Rickard, J. E. and Kreis, T. E. 1992. CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887-900.   DOI
15 Rickard, J. E. and Kreis, T. E. 1990. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells. J. Cell Biol. 110, 1623-1633.   DOI
16 Seog, D. H., Lee, D. H. and Lee, S. K. 2004. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J. Kor. Med. Sci. 19, 1-7.   DOI
17 Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696.
18 Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526.   DOI
19 Kamal, A. and Goldstein, L. S. 2000. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503-508.   DOI
20 Jang, W. H. and Seog, D. H. 2013. Kinesin superfamily-associated protein 3 (KAP3) mediates the interaction between Kinesin-II motor subunits and HS-1-associated protein X-1 (HAX-1) through direct binding. J. Life Sci. 23, 978-983.   DOI
21 Kanai, Y., Dohmae, N. and Hirokawa, N. 2004. Kinesin transports RNA: isolation and characterization of an RNAtransporting granule. Neuron 43, 513-525.   DOI
22 Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A. and Hirokawa, N. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158.   DOI
23 Willige, V. D., Hoogenraad, C. C. and Akhmanova, A. 2016. Microtubule plus-end tracking proteins in neuronal development. Cell Mol. Life Sci. 73, 2053-2077.   DOI