Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.8.1076

Direct Interaction of KIF5s and Actin-Based Transport Motor, Myo9s  

Seog, Dae-Hyun (Department of Biochemistry, College of Medicine, Inje University)
Publication Information
Journal of Life Science / v.21, no.8, 2011 , pp. 1076-1082 More about this Journal
Abstract
Microtubule-based kinesin motor proteins are used for long-range vesicular transport. KIF5s (KIF5A, KIF5B and KIF5C) mediate the transport of various membranous vesicles along microtubules, but the mechanism behind how they recognize and bind to a specific cargo has not yet been completely elucidated. To identify the interaction protein for KIF5B, yeast two-hybrid screening was performed and a specific interaction with the unconventional myosin Myo9b, an actin-based vesicle transport motor, was found. The GTPase-activating protein (GAP) domain of Myo9s was essential for interaction with KIF5B in the yeast two-hybrid assay. Myo9b bound to the carboxyl-terminal region of KIF5B and to other KIF5 members. In addition, glutathione S-transferase (GST) pull-downs showed that Myo9s specifically interact to the complete Kinesin-I complex. An antibody to KIF5B specifically co-immunoprecipitated KIF5B associated with Myo9s from mouse brain extracts. These results suggest that kinesin-I motor protein interacts directly with actin-based motor proteins in the cell.
Keywords
Kinesin-I; molecular motors; actin; myosin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tanaka, Y., Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158.   DOI
2 Tcherkezian, J. and N. Lamarche-Vane. 2007. Current knowledge of the large RhoGAP family of proteins. Biol. Cell 99, 67-86.   DOI
3 Vale, R. D., T. S. Reese, and M. P. Sheetz. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39-50.   DOI
4 Vallee, R. B., G. E. Seale, and J. W. Tsai. 2009. Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol. 19, 347-355.   DOI
5 Wirth, J. A., K. A. Jensen, P. L. Post, W. M. Bement, and M. S. Mooseker. 1996. Human myosin-IXb, an unconventional myosin with a chimerin-like rho/rac GTPase-activating protein domain in its tail. J. Cell Sci. 109, 653-661.
6 Xia, C. H., A. Rahman, Z. Yang, and L. S. Goldstein. 1998. Chromosomal localization reveals three kinesin heavy chain genes in mouse. Genomics 52, 209-213.   DOI
7 Zhu, X. J., C. Z. Wang, P. G. Dai, Y. Xie, N. N. Song, Y. Liu, Q. S. Du, L. Mei, Y. Q. Ding, and W. C. Xiong. 2007. Myosin X regulates netrin receptors and functions in axonal path-finding. Nat. Cell Biol. 9, 184-192.   DOI
8 Post, P. L., M. J. Tyska, C. B. O'Connell, K. Johung, A. Hayward, and M. S. Mooseker. 2002. Myosin-IXb is a single- headed and processive motor. J. Biol. Chem. 277, 11679-11683.   DOI
9 Rahman, A., D. S. Friedman, and L. S. Goldstein. 1998. Two kinesin light chain genes in mice. Identification and characterization of the encoded proteins. J. Biol. Chem. 273, 15395-15403.   DOI
10 Brady, S. T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73-75.   DOI
11 Cai, Q., P. Y. Pan, and Z. H. Sheng. 2007. Syntabulin-kinesin- 1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. J. Neurosci. 27, 7284-7296.   DOI   ScienceOn
12 Hanley, P. J., Y. Xu, M. Kronlage, K. Grobe, P. Schön, J. Song, L. Sorokin, A. Schwab, and M. Bahler. 2010. Motorized RhoGAP myosin IXb (Myo9b) controls cell shape and motility. Proc. Natl. Acad. Sci. USA 107, 12145-12150.   DOI
13 Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526.   DOI   ScienceOn
14 Hirokawa, N., S. Niwa, and Y. Tanaka. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638.   DOI
15 Kanai, Y., N. Dohmae, and N. Hirokawa. 2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513-525.   DOI
16 Kim, S. J., C. H. Lee, H. Y. Park, S. S. Yea, W. H. Jang, S. K. Lee, Y. H. Park, O. S. Cha, I. S. Moon, and D. H. Seog. 2007. JSAP1 interacts with kinesin light chain 1 through conserved binding segments. J. Life Sci. 17, 889-895.   과학기술학회마을   DOI
17 Saeki, N., H. Tokuo, and M. Ikebe. 2005. BIG1 is a binding partner of myosin IXb and regulates its Rho-GTPase activating protein activity. J. Biol. Chem. 280, 10128-10134.   DOI
18 Reinhard, J., A. A. Scheel, D. Diekmann, A. Hall, C. Ruppert, M. Bahler. 1995. A novel type of myosin implicated in signalling by rho family GTPases. EMBO J. 14, 697-704.
19 Rossman, K. L., C. J. Der, and J. Sondek. 2005. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167-180.   DOI
20 Ryu, J., L. Liu, T. P. Wong, D. C. Wu, A. Burette, R. Weinberg, Y. T. Wang, and M. Sheng. 2006. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49, 175-182.   DOI   ScienceOn
21 Setou, M., D. H. Seog, Y. Tanaka, Y. Kanai, Y. Takei, M. Kawagishi, and N. Hirokawa. 2002. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87.   DOI
22 Sousa, A. D., J. S. Berg, B. W. Robertson, R. B. Meeker, and R. E. Cheney. 2006. Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons. J. Cell Sci. 119, 184-194.   DOI
23 Su, Q., Q. Cai, C. Gerwin, C. L. Smith, and Z. H. Sheng. 2004. Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat. Cell Biol. 6, 941-953.   DOI
24 Langford, G. M. 1995. Actin- and microtubule-dependent organelle motors: interrelationships between the two motility systems. Curr. Opin. Cell Biol. 7, 82-88.   DOI
25 LeBeux, Y. J. and J. Willemot. 1975. An ultrastructural study of the microfilaments in rat brain by means of E-PTA staining and heavy meromyosin labeling. II. The synapses. Cell Tissue Res. 160, 37-68.
26 Muresan, Z. and V. Muresan. 2005. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 171, 615-625.   DOI
27 Abouhamed, M., K. Grobe, I. V. San, S. Thelen, U. Honnert, M. S. Balda, K. Matter, and M. Bähler. 2009. Myosin IXa regulates epithelial differentiation and its deficiency results in hydrocephalus. Mol. Biol. Cell 20, 5074-5085.   DOI
28 Lillie, S. H. and S. S. Brown. 1992. Suppression of a myosin defect by a kinesin-related gene. Nature 356, 358-361.   DOI
29 Lillie, S. H. and S. S. Brown. 1994. Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125, 825-842.   DOI
30 Mochida, S., H. Kobayashi, Y. Matsuda, Y. Yuda, K. Muramoto, and Y. Nonomura. 1994. Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 13, 1131-1142.   DOI
31 O'Connell, C. B. and M. S. Mooseker. 2003. Native Myosin-IXb is a plus-, not a minus-end-directed motor. Nat. Cell Biol. 5, 171-172.   DOI
32 Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 81, 769-780.   DOI
33 Post, P. L., G. M. Bokoch, and M. S. Mooseker. 1998. Human myosin-IXb is a mechanochemically active motor and a GAP for rho. J. Cell Sci. 111, 941-950.
34 Bi, G. Q., R. L. Morris, G. Liao, J. M. Alderton, J. M. Scholey, and R. A. Steinhardt. 1997. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999-1008.   DOI
35 Bowman, A. B., A. Kamal, B. W. Ritchings, A. V. Philp, M. McGrail, J. G. Gindhart, and L. S. Goldstein. 2000. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103, 583-594.   DOI