• Title/Summary/Keyword: motion of the Earth and moon

Search Result 38, Processing Time 0.03 seconds

Analyzing Gifted Students' Explanations for Daily Celestial Motion Based on the Earth-based and Heliocentric Frames of Reference

  • Chae, Donghyun;Han, Jejun;Kim, Eunjeong
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.3
    • /
    • pp.664-678
    • /
    • 2013
  • This study aims to investigate gifted students' explanations for daily celestial motion from the Earth-based and heliocentric frames of reference. Eleven sixth-grade elementary school students were chosen for this study and data was collected through a questionnaire and an in-depth interview. The collected data was analyzed into celestial objects which are the Sun, the moon and the stars and analyzed based on the Earth-based and heliocentric perspectives again. As a result of the research, most gifted students were able to connect the Earth-based and heliocentric frames of reference with the Sun's daily apparent motion. However, they understood the daily apparent motion of the moon and the stars far less frequently compared to the Sun's motion and could not explain the Earth's rotation clearly. The result of the interview showed that the lack of understanding about the daily celestial motion was caused by inaccurate understanding of the Earth's rotation such as using memorized knowledge learned in school and guessing the answer.

Middle School and Science-gifted Students' Conceptions about Motion of Objects on the Surface of the Earth and the Moon (지구와 달 표면에서 물체의 운동에 대한 일반 중학생들과 과학영재학생들의 개념)

  • Song, Young-Wook
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.193-207
    • /
    • 2013
  • The purpose of this study was to investigate middle school and science-gifted students' conceptions about motion of objects on the surface of the earth and the moon. The subjects were 61 first-, 51 second-, 51 third-year students, for a total of 163 in a middle school and 32 science-gifted students from a university-affiliated sciencegifted education center for secondary school students. The research contents were conceptions about motion of objects by the vertical direction, an inclined plane and horizontal plane on the surface of the earth and the moon. The questions were as follows: If two balls, same size but different mass, were put on, thrown over, by the vertical direction, an inclined plane and a horizontal plane on the surface of the earth and the moon at the same time and speed, which one would arrive faster than the other?; In the same mass in the earth and the moon, how fast could the object reach to which location, the earth or the moon? The results showed that science-gifted students offer meaningful difference on the concept of objects in motion at the vertical direction, an inclined plane and a horizontal plane on the earth and at the vertical direction on the moon than general middle school students. There were meaningful difference on the vertical up direction, an inclined plane and a horizontal plane in the same situation in the earth and the moon. Finally, based on the results of our study, we discuss possible educational implications for teaching the concept of objects in motion.

High School Student Conception on the Motion of the Earth and Moon (지구와 달의 운동에 대한 고등학생들의 생각)

  • Byun, Jae-Sung;Moon, Byeong-Chan;Jeong, Jin-Woo;Jung, Jae-Gu
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.519-531
    • /
    • 2004
  • The purpose of this study was to ascertain high school student ideas on the motion of the Earth and moon by cognitive level. For this study, five students determined to be of high, middle and low cognitive level selected from 73 10th-grade students at a high school located in Suwon, Gyeonggido. The results of this study were as follows: first, students at the high cognitive level had comparatively more logical and scientific conception on the revolution and rotation of the Earth and moon. second, students at the middle cognitive level, generally had a passive learning attitude to unconditionally memorize learned contents, so they were apt to forget learned contents, also their recognized conception was not enlarged. In addition, they had native theories, intuitive ideas and misconceptions as well as made logical errors in the course of explanation for the motion of the Earth and moon. In the course of explanation for the phases of the moon and the cause of change of season, because of their scientific conception, the students made more and more errors in conception. finally students at the low cognitive level were not willing to think logically and positively and were very passive in the attitude to recognize conception. In addition, they have learned helplessness on the grounds that they have low scholastic achievement specially in science.

The Types of Secondary School Students' Preconceptions on the Motion of the Earth and the Moon (계통도를 이용한 중.고등학생의 지구와 달의 운동에 관한 개념 유형 연구)

  • Woo, Jong-Ok;Lee, Hang-Ro;Min, Jun-Gyu
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.4
    • /
    • pp.379-393
    • /
    • 1995
  • In spite of school science learning, the students' conceptions have not been changed easily. Therefore, to make students overcome their non scientific conceptions has been an important issue in science education. The purpose of this study was to identify the conceptions of students and teachers on the motion of the earth and the moon. The instrument was developed for estimating students' understandings of the concepts related to the motion of the earth and the moon. The validity of the instrument was examined by the specialists in Science Educator and Astronomer. At the same time, the two field trials had been executed, and the items were modified. Also, it consists of 12 items including 9 two-tier multiple choice items and 3 multiple choice items. The population of this study consists of 250 eighth-, 299 tenth-, 292 eleventh-grade students, 134 science teachers in secondary school. SPSS/PC+ was adopted for the statistical analysis. The type of misconceptions possessed students were as follows: 1) At 12:00 noon, the sun is directly overhead. 2) First quarter moon is a half of overall surface of the moon. 3) Air don't rotate with the earth surface because it keeps apart from the earth surface. 4) Summer is warmer than winter, because the earth is nearer from the sun in summer. 5) Whenever season is changed, the direction of rotation axis of the earth is changed. 6) The moon is the brightest at the position of new moon, because the distance between the moon and the sun is the shortest and the moon is received strongest sunlight. 7) The moon is not seen at the position of real full moon, because it is covered with shadow of the earth. 8) When the moon is not seen in the earth, sunlight is not reached at the moon. The major findings were as follows : 1) The middle school students had more misconceptions than those of high school students. And female students had more misconceptions than those of male ones. 2) The rate of correct answer and the type of conception in the tenth grade students were very similar with eleventh grade students. 3) The higher cognitive level, the better development of scientific conception and the less misconception. Also, the correlation coefficient between scientific conception score and GALT score was 0.57. 4) The students in scientific part had higher the rate of correct answer than those of students in human part and the former had less misconception than the latter. 5) The rate of correct answer about model and figure items was lower than descriptive ones, because they did not understand about figures itselves. These types of misconceptions will be used for science instruction and studies of other conceptions need.

  • PDF

Conceptual Changes of Middle School Students on the Motion of the Moon Using the Cognitive Conflict Instructional Model (인지갈등 수업모형을 적용한 중학생의 달의 운동 개념 변화)

  • Kim, Hee-Soo;Chung, Jung-In;Shim, Ki-Chang
    • Journal of the Korean earth science society
    • /
    • v.25 no.5
    • /
    • pp.348-363
    • /
    • 2004
  • The purpose of this study was to classify types of preconception about the motion of the moon held by middle school students and find out how the lesson applying cognitive conflict instructional model changes their conceptual view of the motion of the moon. A quantitative study was first conducted with 48 ninth graders and then followed by a qualitative study. In the qualitative study, male and female students were organized into groups of five and ten respectively. Students were instructed to observe the motion of the moon about for a month and at the same time were taught via the cognitive conflict instructional model for three class periods. Data were collected from interviews and a questionnaire evaluating the degree of concept development that each student showed. A majority of students were found to hold misconceptions formed from elementary school programs on the motion of the moon. Further, students showed lack of scientific ability to interpret the phenomena of the moon. This study showed that the cognitive conflict instructional model was effective for students to make progress regarding their conceptual views of the motion of the moon. However, it was observed that misconceptions by students may possibly occur when two dimensional figures or miniatures were used.

Developement and Application of Interactive type WBI on the Unit of 'Moon Motion' in Middle School Science (중학교 과학 '달의 운동' 단원의 상호작용형 WBI 개발 및 적용)

  • Jung, Ji-Young;Kim, Hee-Soo
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.663-673
    • /
    • 2004
  • This study has developed an interactive WBI to enhance learning effects on 'the Moon motion' for middle-school students. The quality of this examined by applying it to 20 science teachers and 49 middle school students 49. As a result, over 85% of the test subjects gave an affirmative response in the interest induction, the curiosity solving, and the degree of learning participation category, the degree of difficulty item. Response of the students with negative perception on science have changed positively(p<.05) after this WBI learning. In addition, we compared the learners' of knowledge prior and subsequent to 'the Moon motion'. As a result, it was found that the case of 'no concept' was enhanced more than the case having 'partly or ambiguously concept' for 'the Moon motion'.

Characteristics of Perturbations in Recent Length of Day and Polar Motion

  • Na, Sung-Ho;Kwak, Younghee;Cho, Jung-Ho;Yoo, Sung-Moon;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2013
  • Various features of the existing perturbations in the Earth's spin rotation are investigated for the recent and most reliable data by spectral analysis, filtering, and comparison with idealized model. First, theory of Earth's spin rotational perturbation is briefly re-derived in the Earth-fixed coordinate frame. By spectral windowings, different periodic components of the length of day perturbation are separated, and their characters and excitations are discussed. Different periodic components of polar motion are acquired similarly and described with further discussion of their excitations. Causes of the long time trends of both the length of day and polar motion are discussed. Three possible causes are considered for the newly discovered 490-day period component in the polar motion.

Concepts on Motion of Earth and Moon to Spatial Ability, Visual-Perception-Recall Ability, Learning Styles (공간능력, 시지각 회상 능력, 학습양식에 따른 지구와 달의 운동 개념)

  • 김봉섭;정진우;양일호;정지숙
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.2
    • /
    • pp.103-111
    • /
    • 1998
  • The purpose of this study was to investigate the relationship among spatial ability, learning styles, visual-perception- recall abiltiy, and the conceptual construction of the earth and moon's motion. Four paper-and-pencil tests were used to measure students' cognitive variables. Spatial ability was measured by Spatial Visualization Test, visual-perception-recall ability was measured by Rey's Figure which also have used to test visual- perception-recall ability of right-temporal lobes, and VVT were used to investigate students' learning styles. further, the test of concept construction was consisted of 15 items about the earth and moon's motion developed by researcher One hundred and twenty-seven 6th-, one hundred and sixteen 7th-, eighty-seven 9th-grade, ninety-three college students were participated in the investigation of the effects of age and learning style on conceptual construction. In the analysis of students' performances, spatial ability, visual-perception-recall ability, and conceptual achievement showed an increasing pattern with grading. In addition, visual learner's conceptual achievement showed a significantly higher score on conceptual test than verbal learner's(p<0.05). The results of the present study supported tile hypothesis that learning styles would differently influence to learning atmospheric concepts by students'learning styles. This study also indicated to be considered the students' spatial ability in learning atmospheric concepts.

  • PDF

SOFTWARE DEVELOPMENT OF HIGH-PRECISION EPHEMERIDES OF SOLAR SYSTEM (II) (태양계 행성의 고정확도 위치계산에 과한 연구(II))

  • 신종섭;안영숙;박필호;박은광;박종옥
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.78-89
    • /
    • 1995
  • We solved n-body problem about 9 planets, moon, and 4 minor planets with relativistic effect related to the basic equation of motion of the solar system. Perturbations including flgure potential of the earth and the moon and solid earth tidal effect were considered on this relativistic equation of motion. The orientations employed precession and nutation for the earth, and lunar libration model with Eckert's lunar libration model based on J2000.0 were used for the moon. Finally, we developed heliocentric ecliptic position and velocity of each planet using this software package named the SSEG (Solar System Ephemerides Generator) by long-term (more than 100 years) simulation on CRAY-2S super computer, through testing each subroutine on personal computer and short-time(within 800 dyas) running on SUN3/280 workstation. Epoch of input data JD2440400.5 were adopted in order to compare our results to the data archived from JPL's DE 200 by Standish and Newhall. Above equation of motion was integrated numerically having 1-day step-size interval through 40,000 days (about 110 years long) as total computing interval. We obtained high-precision ephemerides of the planets with maximum error, less $than\pm2\times10^{-8}AU(\approx\pm3km)$ compared with DE200 data (except for mars and moon).

  • PDF

Chandler Wobble and Free Core Nutation: Theory and Features

  • Na, Sung-Ho;Roh, Kyoung-Min;Cho, Jungho;Yoo, Sung-Moon;Choi, Byungkyu;Yoon, Hasu
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2019
  • Being a torque free motion of the rotating Earth, Chandler wobble is the major component in the Earth's polar motion with amplitude about 0.05-0.2 arcsec and period about 430-435 days. Free core nutation, also called nearly diurnal free wobble, exists due to the elliptical core-mantle boundary in the Earth and takes almost the whole part of un-modelled variation of the Earth's pole in the celestial sphere beside precession and nutation. We hereby present a brief summary of their theories and report their recent features acquired from updated datasets (EOP C04 and ECMWF) by using Fourier transform, modelling, and wavelet analysis. Our new findings include (1) period-instability of free core nutation between 420 and 450 days as well as its large amplitude-variation, (2) re-determined Chandler period and its quality factor, (3) fast decrease in Chandler amplitude after 2010.