• Title/Summary/Keyword: monotone sequence

Search Result 39, Processing Time 0.025 seconds

A Class of Median Filters and Its Properties (중앙값 여파기의 한 부류와 그 성질)

  • 한영옥;송익호;박양수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.402-406
    • /
    • 1991
  • In this paper, we find a set of conditions on weights under which a recursive weighted median filter preserves monotone or localy monotone sequence and under which any input sequence converges to a locally monotone sequence after a finite number of passes.

PARAMETRIC APPROXIMATION OF MONOTONE DECREASING SEQUENCE

  • Rhee, Hyang J.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.77-83
    • /
    • 2004
  • The aim of this work is to generalize parametric approximation in order to apply them to an one-sided $L_1$-approximation. A natural question now arises : when is the parameter map $$P:f{\rightarrow}P_{K(f)}(f)$$ continuous on $C_1(X)$ ? We find some results with a monotone decreasing sequence about above question.

  • PDF

STRONG CONVERGENCE THEOREMS FOR NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY-MONOTONE MAPPINGS IN A BANACH SPACE

  • Liu, Ying
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.627-639
    • /
    • 2010
  • In this paper, we introduce a new iterative sequence finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly-monotone mapping in a Banach space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly-monotone mapping, the fixed point problem and the classical variational inequality problem. Our results improve and extend the corresponding results announced by many others.

A MODIFIED PROXIMAL POINT ALGORITHM FOR SOLVING A CLASS OF VARIATIONAL INCLUSIONS IN BANACH SPACES

  • LIU, YING
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.3_4
    • /
    • pp.401-415
    • /
    • 2015
  • In this paper, we propose a modified proximal point algorithm which consists of a resolvent operator technique step followed by a generalized projection onto a moving half-space for approximating a solution of a variational inclusion involving a maximal monotone mapping and a monotone, bounded and continuous operator in Banach spaces. The weak convergence of the iterative sequence generated by the algorithm is also proved.

ON THE PROXIMAL POINT METHOD FOR AN INFINITE FAMILY OF EQUILIBRIUM PROBLEMS IN BANACH SPACES

  • Khatibzadeh, Hadi;Mohebbi, Vahid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.757-777
    • /
    • 2019
  • In this paper, we study the convergence analysis of the sequences generated by the proximal point method for an infinite family of pseudo-monotone equilibrium problems in Banach spaces. We first prove the weak convergence of the generated sequence to a common solution of the infinite family of equilibrium problems with summable errors. Then, we show the strong convergence of the generated sequence to a common equilibrium point by some various additional assumptions. We also consider two variants for which we establish the strong convergence without any additional assumption. For both of them, each iteration consists of a proximal step followed by a computationally inexpensive step which ensures the strong convergence of the generated sequence. Also, for this two variants we are able to characterize the strong limit of the sequence: for the first variant it is the solution lying closest to an arbitrarily selected point, and for the second one it is the solution of the problem which lies closest to the initial iterate. Finally, we give a concrete example where the main results can be applied.

STRONG CONVERGENCE THEOREMS FOR ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND INVERSE-STRONGLY MONOTONE MAPPINGS

  • He, Xin-Feng;Xu, Yong-Chun;He, Zhen
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, we consider an iterative scheme for finding a common element of the set of fixed points of a asymptotically quasi nonexpansive mapping and the set of solutions of the variational inequality for an inverse strongly monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common fixed point of a asymptotically quasi-nonexpansive mapping and strictly pseudocontractive mapping and the problem of finding a common element of the set of fixed points of a asymptotically quasi-nonexpansive mapping and the set of zeros of an inverse-strongly monotone mapping.

GENERAL NONLINEAR VARIATIONAL INCLUSIONS WITH H-MONOTONE OPERATOR IN HILBERT SPACES

  • Liu, Zeqing;Zheng, Pingping;Cai, Tao;Kang, Shin-Min
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.263-274
    • /
    • 2010
  • In this paper, a new class of general nonlinear variational inclusions involving H-monotone is introduced and studied in Hilbert spaces. By applying the resolvent operator associated with H-monotone, we prove the existence and uniqueness theorems of solution for the general nonlinear variational inclusion, construct an iterative algorithm for computing approximation solution of the general nonlinear variational inclusion and discuss the convergence of the iterative sequence generated by the algorithm. The results presented in this paper improve and extend many known results in recent literatures.

CONVERGENCE AND STABILITY OF THREE-STEP ITERATIVE SCHEME WITH ERRORS FOR COMPLETELY GENERALIZED STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • ZHANG FENGRONG;GAO HAIYAN;LIU ZEQING;KANG SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.465-478
    • /
    • 2006
  • In this paper, we introduce a new class of completely generalized strongly nonlinear quasivariational inequalities and establish its equivalence with a class of fixed point problems by using the resolvent operator technique. Utilizing this equivalence, we develop a three-step iterative scheme with errors, obtain a few existence theorems of solutions for the completely generalized non-linear strongly quasivariational inequality involving relaxed monotone, relaxed Lipschitz, strongly monotone and generalized pseudocontractive mappings and prove some convergence and stability results of the sequence generated by the three-step iterative scheme with errors. Our results include several previously known results as special cases.

TOPOLOGICAL ENTROPY OF A SEQUENCE OF MONOTONE MAPS ON CIRCLES

  • Zhu Yuhun;Zhang Jinlian;He Lianfa
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.373-382
    • /
    • 2006
  • In this paper, we prove that the topological entropy of a sequence of equi-continuous monotone maps $f_{1,\infty}={f_i}\;\infty\limits_{i=1}$on circles is $h(f_{1,\infty})={\frac{lim\;sup}{n{\rightarrow}\infty}}\;\frac 1 n \;log\;{\prod}\limits_{i=1}^n|deg\;f_i|$. As applications, we give the estimation of the entropies for some skew products on annular and torus. We also show that a diffeomorphism f on a smooth 2-dimensional closed manifold and its extension on the unit tangent bundle have the same entropy.

A NEW CRITERION FOR MOMENT INFINITELY DIVISIBLE WEIGHTED SHIFTS

  • Hong T. T. Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.437-460
    • /
    • 2024
  • In this paper we present the weighted shift operators having the property of moment infinite divisibility. We first review the monotone theory and conditional positive definiteness. Next, we study the infinite divisibility of sequences. A sequence of real numbers γ is said to be infinitely divisible if for any p > 0, the sequence γp = {γpn}n=0 is positive definite. For sequences α = {αn}n=0 of positive real numbers, we consider the weighted shift operators Wα. It is also known that Wα is moment infinitely divisible if and only if the sequences {γn}n=0 and {γn+1}n=0 of Wα are infinitely divisible. Here γ is the moment sequence associated with α. We use conditional positive definiteness to establish a new criterion for moment infinite divisibility of Wα, which only requires infinite divisibility of the sequence {γn}n=0. Finally, we consider some examples and properties of weighted shift operators having the property of (k, 0)-CPD; that is, the moment matrix Mγ(n, k) is CPD for any n ≥ 0.