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A NEW CRITERION FOR MOMENT

INFINITELY DIVISIBLE WEIGHTED SHIFTS

Hong T. T. Trinh

Abstract. In this paper we present the weighted shift operators having

the property of moment infinite divisibility. We first review the mono-
tone theory and conditional positive definiteness. Next, we study the

infinite divisibility of sequences. A sequence of real numbers γ is said
to be infinitely divisible if for any p > 0, the sequence γp = {γp

n}∞n=0 is
positive definite. For sequences α = {αn}∞n=0 of positive real numbers,

we consider the weighted shift operators Wα. It is also known that Wα

is moment infinitely divisible if and only if the sequences {γn}∞n=0 and

{γn+1}∞n=0 of Wα are infinitely divisible. Here γ is the moment sequence

associated with α. We use conditional positive definiteness to establish a
new criterion for moment infinite divisibility of Wα, which only requires

infinite divisibility of the sequence {γn}∞n=0. Finally, we consider some

examples and properties of weighted shift operators having the property
of (k, 0)-CPD; that is, the moment matrix Mγ(n, k) is CPD for any n ≥ 0.

1. Introduction

Let H be a complex Hilbert space, and B(H) be the set of bounded linear
operators on H. Recall that an operator T ∈ B(H) is said to be normal
(respectively, hyponormal) if T ∗T = TT ∗ (respectively, T ∗T ≥ TT ∗), and
subnormal if it has a normal extension, i.e., T = N |H, where N is a normal
operator on some Hilbert space K ⊇ H. On the other hand, the Bram-Halmos
criterion for subnormality states that an operator T ∈ B(H) is subnormal if
and only if

∑
i,j(T

ifj , T
jfi) ≥ 0 for any finite collections f0, . . . , fk ∈ H (see

[6]). It is easily seen that this is equivalent to the following positivity matrices

(1) (T ∗jT i)ki,j=0 =


I T ∗ · · · T ∗k

T T ∗T · · · T ∗kT
...

...
. . .

...
T k T ∗T k · · · T ∗kT k

 ≥ 0, ∀ k ≥ 1.
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Note that the positivity condition (1) for k = 1 is equivalent to the hyponor-
mality, and subnormality requires the positivity of (1) for all k ≥ 1.

Let[A,B] := AB − BA denote the commutator of two operators, A and B.
An operator T ∈ B(H) is said to be k-hyponormal whenever the k×k operator
matrix ([T ∗j , T i])ki,j=1 ≥ 0. An application of Choleski algorithm shows that

the positivity of k×k matrix ([T ∗j , T i])ki,j=1 is equivalent to the positivity of the

(k+1)× (k+1) matrix (T ∗jT i)ki,j=0 in (1). The Bram-Halmos criterion can be
then rephrased as saying that T is subnormal if and only if T is k-hyponormal
for every k ≥ 1.

An operator T ∈ B(H) is said to be Embry k-hyponormal whenever the
k × k operator matrix Ek(T ) := ([T ∗i+j , T i+j ])ki,j=0 ≥ 0. It is easily seen

that Ek(T ) = Dk(T )
∗(T ∗jT i)ki,j=0Dk(T ), where Dk(T ) = diag(I,T, . . . ,Tk).

Therefore, k-hyponormality implies Embry k-hyponormality. Moreover, k-
hyponormality is equivalent to Embry k-hyponormality for weighted shift op-
erators but it is not true in general (see [15]). Let Wα be a unilateral weighted
shift with the weight sequence α = {αn}∞n=0. The sequence γ = {γn}∞n=0 is the
moment sequence of Wα defined by{

γ0 := 1,

γn := α2
0 · · ·α2

n−1.

Note that the positivity of (W ∗j
α W i

α)
k
i,j=0 ≥ 0 is equivalent to the positivity of

([W ∗i+j
α ,W i+j

α ])ki,j=0. Therefore, k-hyponormality of a weighted shift equiva-

lent to the positivity of the Hankel moment matrix Mγ(n, k) := (γn+i+j)
k
i,j=0

for each n = 0, 1, . . . (see [7]).
Let γ = {γn}∞n=0 be a sequence of real numbers. Recall that the sequence γ

is said to be positive definite (PD) if for all finite sequences z0, z1, . . . , zk ∈ C,
k∑

i,j=0

γijziz̄j ≥ 0,(2)

i.e., the (k + 1)× (k + 1) Hankel matrix (γi+j)
k
i,j=0 is positive semidefinite for

any k ≥ 1. Note that a sequence of real numbers γ = {γn}∞n=0 is positive
definite if (2) holds for all finite real sequences z0, z1, . . . , zk ∈ R. Also, recall
that a sequence of real numbers {γn}∞n=0 is said to be a Stieltjes sequence if
there exists a finite Borel measure µ on R+ called a representing measure of
{γn}∞n=0, such that

γn =

∫
R+

xndµ(x), n = 0, 1, . . . .

By Stieltjes’ Theorem, a sequence {γn}∞n=0 ⊂ R is a Stieltjes moment sequence
if and only if the sequences {γn}∞n=0 and {γn+1}∞n=0 are PD (see [5]). We also
recall that a weighted shift Wα is subnormal if and only if it has a Berger mea-
sure, meaning a probability measure µ is supported on

[
0, ∥Wα∥2

]
such that for
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each n ≥ 0, γn =
∫ ∥Wα∥2

0
tndµ(t) (see [6]). It follows that a weighted shift Wα

is subnormal if and only if the moment sequence {γn}∞n=0 of Wα is a Stieltjes
moment sequence. By using weighted shifts, an interesting characterization of
subnormality that can be adapted to the context of not necessarily injective op-
erators and it is stated that T ∈ B(H) is subnormal if and only if the sequence
{∥Tnh∥}∞n=0 is a positive definite sequence for every h ∈ H. This is equivalent
to the fact that the sequence {∥Tnh∥}∞n=0 is a Stieltjes moment for every h ∈ H
(see [13]). Moreover, Agler’s characterization is another approach to subnor-
mality based on the notion of n-contractivity. For n ≥ 1, an operator T ∈ B(H)
is said to be n-contractive if An(T ) :=

∑n
i=0(−1)i

(
n
i

)
T ∗iT i ≥ 0. Agler’s char-

acterization (see [1]) states that a contraction operator T ∈ B(H) is subnormal
if and only if T is n-contractive for all positive integers n. It is well known
that for a weighted shift Wα it suffices to test this condition on basis vectors
and that a weighted shift is n-contractive if and only if

∑n
i=0(−1)i

(
n
i

)
γk+i ≥ 0,

k = 0, 1, . . . , where {γk}∞k=0 is the moment ofWα. This relates to the monotone
theory that we will mention in Section 2.1.

In Section 2.2, we briefly review some basic properties of infinitely divisible
matrices that raise up for moment infinitely divisible weighted shifts in Section
2.4. Section 2.3 presents some important properties of CPD matrices and their
proofs. Also Section 2.3 contains a brief summary of CPD operators. Then we
use some properties of CPD matrices and CPD operators to establish a relation
between subnormality and positive definiteness of the moment sequence for a
contractive weighted shift that will be given in Section 3.

Lemma 1.1. Let Wα be a weighted shift with positive weights, γ = {γn}∞n=0 be
the moment sequence of Wα. Assume that Wα is contractive, then the following
conditions are equivalent.

(i) Wα is subnormal.
(ii) {γn+j}∞n=0 is PD for any j ≥ 0.
(iii) {γn}∞n=0 is PD.

We are now ready to state the main results of the present paper. We show
that the above equivalence still holds without the contractivity condition.

Theorem 1.2. Let Wα be a weighted shift with positive weights, {γn}∞n=0 be
the moment sequence of Wα. Then the following statements are equivalent.

(i) Wα is subnormal.
(ii) {γn+j}∞n=0 is PD for any j ≥ 0.
(iii) {γn}∞n=0 is PD.

Remark 1.3. As mentioned, a weighted shift Wα is subnormal if and only if the
moment sequence {γn}∞n=0 is a Stieltjes moment, equivalently, the sequences
{γn}∞n=0 and {γn+1}∞n=0 are PD (by Stieltjes’ Theorem). Theorem 1.2 here
gives a weaker condition for the subnormality of a weighted shift Wα. That is,
we only require the sequence {γn}∞n=0 is PD to get subnormality of Wα.
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As an immediate consequence of Theorem 1.2, we obtain a result including a
new sufficient condition for moment infinitely divisibility of any weighted shift
(without the contractivity condition). Recall that a weighted shift Wα with
positive weight sequence {αn}∞n=0 is called moment infinitely divisible (MID)
if for all p > 0, Schur power W ◦p

α is subnormal. We define a sequence of real
numbers γ = {γn}∞n=0 is infinitely divisible (ID) if for any p > 0, the sequence
γp = {γp

n}∞n=0 is positive definite. It is known that Wα is MID if and only if
{γn}∞n=0 and {γn+1}∞n=0 are ID (see [4]) By Theorem 1.2, we also only require
the sequence {γn}∞n=0 to be ID in order for Wα to be MID. This is stated as
follows.

Corollary 1.4. Let Wα be a weighted shift with positive weight and γ =
{γn}∞n=0 be the moment sequence of Wα. The following statements are equiva-
lent.

(i) Wα is MID.
(ii) {γn+j}∞n=0 is ID for every j = 0, 1, . . ..
(iii) {γn}∞n=0 is ID.

In Section 4, we consider weighted shifts Wα having the property of (k, 0)-
CPD; that is, the moment matrix Mγ(n, k) := (γn+i+j)

k
i,j=0 is CPD. Also,

there are some examples and properties of (k, 0)-CPD weighted shifts.

2. Notation and preliminaries

2.1. Monotone theory

In this section, we briefly recall the monotone (alternating) theory. We first
begin with the monotone theory of function.

Definition. A function f : R+ → R is said to be completely monotone
(respectively, completely alternating) if its derivatives alternate in sign, i.e.,
(−1)kf (k) ≥ 0 (respectively, (−1)kf (k) ≤ 0) for all k = 0, 1, . . ..

Note that a function f is completely monotone if and only if −f is completely
alternating. Bernstein’s theorem states that the function f is completely mono-
tone if and only if f = L(µ) for some positive measure µ, where L denotes the
Laplace transform. The following lemma is quite useful in checking some com-
pletely monotone functions.

Lemma 2.1 ([8]). (i) If f1, f2 are completely monotone functions and c
is a any positive number, then cf1, f1 + f2, and f1f2 are completely
monotone as well.

(ii) If f1, . . . , fn are completely monotone then so is any convex combina-
tion

∑n
j=1 ajfj.

(iii) If f is completely monotone and g is a Bernstein function, then f ◦g is
completely monotone. (Note that nonnegative functions whose deriva-
tive is completely monotone are called Bernstein functions).
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(iv) If g : R+ → R+ \ {0} has all its derivatives non-negative on R+,
g(1) = 1, and f is completely monotone, then the composition g ◦ f is
completely monotone.

(v) If n,m ∈ N, and f is completely monotone, then so is g defined by

g(x) = f(nx+m)
f(m) .

There is a well known connection between completely monotone and com-
pletely alternating functions, which can be stated as follows.

Lemma 2.2 ([5, Proposition 6.10]). The function f : R+ → R− is completely
alternating if and only if the function gt : R+ → R+ defined by gt(x) := e−tf(x)

is completely monotone for all t > 0.

For each n ∈ N, a function f : R+ → R+ is said to be n-monotone if
(−1)kf (k) ≥ 0 for k = 0, 1, . . . , n. Similarly, a function f : R+ → R− is said to
be n-alternating, n ∈ N if (−1)kf (k) ≤ 0 for k = 0, 1, . . . , n.

Remark 2.3. (i) A function f is 1−monotone (respectively, 1−alternating)
which means f is a nonnegative decreasing function (respectively, non-
positive increasing function).

(ii) A function f is completely monotone (respectively, completely alter-
nating) if and only if f is n-monotone (respectively, n-alternating) for
any n ∈ N.

We next discuss the monotone theory of sequences. We first introduce the
forward difference operator ∇. Given a sequence φ = {ak}∞k=0,

φ :N → R
k 7→ φ(k) = ak,

the forward difference operator ∇ acting on φ is defined by

∇φ :N → R
k 7→ (∇φ)(k),

where (∇φ)(k) = φ(k) − φ(k + 1) = ak − ak+1. For each n ∈ N, the iterated
forward difference operator ∇n is defined by

∇0φ := φ

∇nφ := ∇(∇n−1φ).

For instance,

(∇φ)(k) = φ(k)− φ(k + 1),

(∇2φ)(k) = (∇φ)(k)− (∇φ)(k + 1) = φ(k)− 2φ(k + 1) + φ(k + 2),

...

(∇nφ)(k) =

n∑
i=1

(−1)i
(
n

i

)
φ(k + i),
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and so on.

Definition (see [4]). (i) A sequence φ is said to be n-monotone (respec-
tively, n-alternating) if (∇nφ)(k) ≥ 0 (respectively, (∇nφ)(k) ≤ 0) for
all k = 0, 1, . . ..

(ii) A sequence φ is n-hypermonotone (respectively, n-hyperalternating) if
it is j-monotone (respectively, j-alternating) for all j = 1, . . . , n.

(iii) A sequence φ is said to be completely monotone (respectively, com-
pletely alternating) if it is n-monotone (respectively, n-alternating) for
all n = 1, 2, . . ..

Definition (see [4]). Let {ak}∞k=0 be a sequence of positive numbers.

(i) {ak}∞k=0 is n-log monotone (respectively, n-log alternating) if {log ak}∞k=0

is n-monotone (respectively, n-alternating).
(ii) {ak}∞k=0 is n-log hypermonotone (respectively, n-log hyperalternating)

if {log ak}∞k=0 is n-hypermonotone (respectively, n-hyperalternating).
(iii) {ak}∞k=0 is completely log monotone (respectively, completely log alter-

nating) if {log ak}∞k=0 is completely monotone (respectively, completely
alternating).

Note that {ak}∞k=0 is n-monotone (respectively, n-hypermonotone, n-log
monotone,. . . ) if and only if {−ak}∞k=0 is a n-alternating (respectively, n-
hyperalternating, n-log alternating,. . . ).

Definition. Let {ak}∞k=0 be a sequence. We say that it is interpolated by
f : R+ → R if ak = f(k) for all k = 0, 1, . . ..

Lemma 2.4. Let f : R+ → R be a function and {an}∞n=0 be a sequence inter-
polated by f .

(i) If f is n-monotone then {an}∞n=0 is n-hypermonotone, so {an}∞n=0 is
n-monotone.

(ii) If f is n-alternating then {an}∞n=0 is n-hyperalternating, so {an}∞n=0 is
n-alternating.

(iii) If f is completely monotone (respectively, completely alternating) then
{an}∞n=0 is completely monotone (respectively, completely alternating).

(iv) If f is n-log monotone then {an}∞n=0 is n-log hypermonotone (so is
n-log monotone).

(v) If f is n-log alternating then {an}∞n=0 is n-log hyperalternating (so is
n-log alternating).

(vi) If f is completely log monotone (respectively, completely log alternating)
then {an}∞n=0 is completely log monotone (respectively, completely log
alternating).

Proof. We prove only the first assertion, as the other proofs are similar. Assume
that f is n-monotone, i.e., (−1)kf (k) ≥ 0 for any k = 0, 1, 2, . . . , n. Since
f ′(x) ≤ 0 ∀x ∈ R+, we have that f(x)− f(x+ 1) ≥ 0, ∀x ∈ R+. Therefore we
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can construct a positive function g1 : R+ → R+ defined by

g1(x) = f(x)− f(x+ 1) ≥ 0,∀x ∈ R+.

Moreover, since f ′′(x) ≥ 0 ∀x ∈ R+, so

g1
′(x) = f ′(x)− f ′(x+ 1) ≤ 0,∀x ∈ R+.

This means g1 is decreasing on R+, and so g1(x)− g1(x+ 1) ≥ 0,∀x ∈ R+.
Similarly, we get a positive function g2 : R+ → R+ defined by

g2(x) = g1(x)− g1(x+ 1) ≥ 0,∀x ∈ R+.

Repeating this process, we get n positive functions gj : R+ → R+, defined by

gj(x) = gj−1(x)− gj−1(x+ 1) ≥ 0,∀x ∈ R+, j = 1, . . . , n.

For each k ≥ 0, we get

∇ak = ak − ak+1 = f(k)− f(k + 1) = g1(k) ≥ 0,

∇2ak = ∇ak −∇ak+1 = g1(k)− g1(k + 1) = g2(k) ≥ 0,

...

∇nak = ∇n−1ak −∇n−1ak+1 = gn−1(k)− gn−1(k + 1) = gn(k) ≥ 0,

so that {ak}∞k=0 is n-hypermonotone. This completes the proof. □

We observe that if a sequence {ak}∞k=0 is n-hypermonotone then the sequence
{ak}∞k=0 is n-monotone, but the converse is not true as we see in the following
example.

Example 2.5. The Dirichlet shift D = shift
{√

n+2
n+1

}∞

n=0
has the moment

sequence γ = {γn}∞n=0, where γ0 = 1 and γn = 2
1
3
2 . . .

n+1
n = n+ 1. Since

∇2γk = γk − 2γk+1 + γk+2 = 0,

and

∇γk = γk − γk+1 = −1 < 0,

it is clear that this moment sequence γ is 2-monotone but not 1-monotone.

By Lemma 2.4, we see that all properties of monotone functions theory still
remain valid for monotone sequences theory. As a consequence of Lemma 2.4,
we get the following result.

Lemma 2.6. The sequence {ak}∞k=0 is completely alternating if and only if the
sequence {etak}∞k=0 is completely monotone for all t > 0.

Lemma 2.7 ([4, Proposition 2.4]). Suppose n ∈ N and {ak}∞k=0 is a sequence
of real numbers, and in addition, limk→∞ ak exists. Then, if {ak}∞k=0 is n-
monotone (respectively, n-alternating), it is n-hypermonotone (respectively, n-
hyperalternating). Moreover, in addition assume that limk→∞ ak ̸= 0 then, if
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{ak}∞k=0 is n-log monotone (respectively, n-log alternating), it is n-log hyper-
monotone (respectively, n-log hyperalternating).

2.2. Infinitely divisible (ID) matrices

Let A = (aij)
k
i,j=1 and B = (bij)

k
i,j=1 be two k× k matrices. Recall that the

Schur product (or the Hadamard product) of A and B is the matrix A ◦ B =
(aijbij)

k
i,j=1. The following theorem is the most interesting theorem about the

Schur product.

Theorem 2.8 (see [16]). If A = (aij)
k
i,j=1 and B = (bij)

k
i,j=1 are two k×k pos-

itive semidefinite matrices then the Schur product matrix A ◦B = (aijbij)
k
i,j=1

is positive semidefinite.

Remark 2.9. We can easily see that if A = (aij)
k
i,j=1 is a k × k positive semi-

definite matrix, then p-Schur power A◦p = (apij)
k
i,j=1 is positive semidefinite

for each nonnegative integer p ∈ Z. However this is no longer true for positive
real numbers p ∈ R+. For example, we consider the Hermitian 3× 3 matrix A
defined by

A =

1 1 0
1 2 1
0 1 1

 .

The p-Schur power matrix A◦p is

A◦p =

1 1 0
1 2p 1
0 1 1

 .

Note that all eigenvalues of Hermitian matrix A are {0, 1, 3}, so A ≥ 0. Also,
a simple computation gives eigenvalues of p-Schur power matrix A◦p,

{1, 2p + 1−
√

(2p − 1)2 + 8, 2p + 1 +
√

(2p − 1)2 + 8}.
For the eigenvalue λ = 2p + 1 −

√
(2p − 1)2 + 8, it is obvious that λ ≥ 0 if

and only if p ≥ 1. Therefore p-Schur power A◦p is not positive semidefnite if
0 < p < 1.

Theorem 2.10 ([10]). If A = (aij)
k
i,j=1 is a k× k positive semidefinite matrix

with aij ≥ 0 for all i and j, then the p-Schur power matrix A◦p is positive
semidefinite for each real numbers p ≥ k − 2. Moreover, if p < k − 2, we can
construct a positive semidefinite matrix A for which p-Schur power matrix A◦p

is not positive semidefinite.

Definition. Suppose that A = (aij)
k
i,j=1 is a k×k positive semidefinite matrix

and aij ≥ 0 for all i and j. We say that A is infinitely divisible if the p-Schur
power matrix A◦p is positive semidefinite for every nonnegative p.

Remark 2.11. If the 1
m -Schur power matrix A◦ 1

m ≥ 0 for all m = 1, 2, . . .. then
p-Schur power A◦p ≥ 0 for all positive rational numbers r. Therefore, a k × k
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positive semidefinite matrix A = (aij)
k
i,j=1 with entries aij ≥ 0 for all i and j

is infinitely divisible if and only if for each positive integer m, there exists a
positive semidefinite matrix B such that A = B◦m.

Lemma 2.12. Every 2×2 positive semidefinite matrix with nonnegative entries
is infinitely divisible.

Proof. Assume that A is a 2× 2 positive semidefinite matrix with nonnegative
entries,

A =

(
a b
b c

)
.

Note that A ≥ 0 if and only if a, c ≥ 0 and detA = ac− b2 ≥ 0. For any p > 0,
the p-Schur power matrix A◦p is

A◦p =

(
ap bp

bp cp

)
.

Since a, c ≥ 0 and detA = ac− b2 ≥ 0, so ap and cp are nonnegative numbers
and detA◦p = (ac)p − b2p ≥ 0 for any p > 0. That completes the proof. □

2.3. Conditionally positive definiteness (CPD)

The class of positive semidefinite matrices is important and is also well stud-
ied. Now we consider a class of Hermitian matrices with exactly one eigenvalue
of one sign and the remaining eigenvalues of the other sign.

Definition. A Hermitian k×k complex matrix A = (aij)
k
i,j=1 is said to be con-

ditionally positive definite, abbreviated CPD (respectively, conditionally nega-
tive definite, abbreviated CND) if v∗Av(= ⟨Av, v⟩) =

∑
aijviv̄j ≥ 0 (respec-

tively, ≤ 0) for any v = (vi)
k
i=1 ∈ Ck such that

∑
vi = 0. An infinite (scalar)

matrix is CPD (respectively, CND) if all of its principal minors of finite size
are CPD (respectively, CND).

Remark 2.13. (i) A Hermitian k × k real matrix A = (aij)
k
i,j=1 is CPD (re-

spectively, CND) if and only if it satisfies the CPD positivity condition
(respectively, CND negativity condition) for vectors with real coordinates
adding up to zero.

(ii) A ≥ 0 (respectively, CPD) if and only if −A ≤ 0 (respectively, CND).

Strictly speaking, we should use the term “semidefinite” instead of “definite”
in the definition above, but we continue to use “definite” for convenience. It is
obvious that any positive (respectively, negative) semidefinite matrix is CPD
(respectively, CND). Note, however, that the converse of this statement need
not necessarily hold. For example, we consider the following matrix on C2

A =

(
0 −1
−1 0

)
.
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Clearly, A is not positive semidefinite since det(A) = −1 < 0. However, A
is conditionally positive definite. Indeed, for x = (x1, x2) ∈ C2 such that
x1 + x2 = 0. We put x1 = t where t ∈ C, thus x2 = −t. Then

Ax =

(
0 −1
−1 0

)(
t
−t

)
=

(
t
−t

)
= x

and so,

⟨Ax, x⟩ = ⟨x, x⟩ = ∥x∥2 ≥ 0.

Remark 2.14. Observe that positive definite matrices are preserved under the
unitary equivalence. However, this is no longer true for CPD matrices. For
example, we consider

A =

(
0 −1
−1 0

)
,

and

B =

(
− 24

25
7
25

7
25

24
25

)
.

Observe that A and B are unitary equivalent under the unitary matrix C,
where

C =

(
3
5 − 4

5

4
5

3
5

)
,

and hence A is CPD. However, B is not CPD. We can use the following lemma
to easily prove it.

Lemma 2.15 ([11, Excerise 8, p. 457]). Let A = (aij)
k
i,j=1 be a Hermitian

k × k complex matrix. Then A is CPD if and only if B :=
(
ai,j − ai,j+1 −

ai+1,j + ai+1,j+1

)k−1

i,j=1
≥ 0.

Proof. For x = (xi)
k
i=1 ∈ Ck such that x1 + x2 + · · ·+ xn = 0, we put

x1 :=t1,

xj :=− tj−1 + tj ,∀ j ∈ {2, . . . , k − 1}
xk :=− tk−1,

where t1, t2, ..., tk−1 ∈ C. Then the vector x can be written as follows

x =



1
−1
0
...
0
0


t1 +



0
1
−1
...
0
0


t2 + · · ·+



0
0
0
...
1
−1


tk−1.
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Observe that

Ax =



a11 − a12
a21 − a22
a31 − a32

...
ak−1,1 − ak−1,2

ak1 − ak2


t1 +



a12 − a13
a22 − a23
a32 − a33

...
ak−1,2 − ak−1,3

ak2 − ak3


t2 + . . .

+



a1,k−1 − a1,k
a2,k−1 − a2,k
a3,k−1 − a3,k

...
ak−1,k−1 − ak−1,k

ak,k−1 − ak,k


tk−1.

A simple computation gives

⟨Ax, x⟩ =
k−1∑
i=1

k−1∑
j=1

(ai,j − ai,j+1 − ai+1,j + ai+1,j+1)⟨tj , ti⟩.

Let B be a (k − 1)× (k − 1) matrix defined by

B :=
(
ai,j − ai,j+1 − ai+1,j + ai+1,j+1

)k−1

i,j=1
.

Now write t = (ti)
k−1
i=1 , then

Bt =



k∑
j=1

(a1,j − a1,j+1 − a2,j + a2,j+1)tj

k∑
j=1

(a2,j − a2,j+1 − a3,j + a3,j+1)tj

...
k∑

j=1

(ak−1,j − ak−1,j+1 − ak,j + ak,j+1)tj


,

yielding that

⟨Bt, t⟩ =
k−1∑
i=1

k−1∑
j=1

(ai,j − ai,j+1 − ai+1,j + ai+1,j+1)⟨tj , ti⟩.

Therefore ⟨Ax, x⟩ = ⟨Bt, t⟩ for all t = (ti)
k−1
1 ∈ Ck−1, where x = (t1,−t1 +

t2, . . . ,−tk−2 + tk−1, tk−1)
t ∈ Ck. This is immediate that ⟨Ax, x⟩ ≥ 0 for all

x = (xi)
k
i=1 ∈ Ck such that

∑k
i=1 xi = 0 if and only if ⟨Bt, t⟩ ≥ 0 for all

t = (ti)
k−1
i=1 ∈ Ck−1, and the result is proved. □

Lemma 2.16 ([2, Lemma 4.1.4]). (i) If a Hermitian matrix A = (aij)
k
i,j=1

is CPD, then A has at most one negative eigenvalue.
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(ii) If a Hermitian matrix A = (aij)
k
i,j=1 is CND, then A has at most one

positive eigenvalue.

Corollary 2.17 ([2, Corollary 4.1.5]). (i) If a Hermitian k × k nonzero
matrix A = (aij)

k
i,j=1 with non-positive entries (aij ≤ 0) is CPD, then

A has exactly one negative eigenvalue.
(ii) If a Hermitian k × k nonzero matrix A = (aij)

k
i,j=1 with non-negative

entries (aij ≥ 0) is CND, then A has exactly one positive eigenvalue.

The following results will answer the question about the necessary and suf-
ficient condition of CPD matrix A that has exactly one negative eigenvalue.

Corollary 2.18. (i) Let A = (aij)
k
i,j=1 is a nonzero CPD matrix. Then

A has exactly one negative eigenvalue if and only if A is non-positive
semidefinite.

(ii) Let A = (aij)
k
i,j=1 is a nonzero CND matrix. Then A has exactly one

positive eigenvalue if and only if A is non-negative semidefinite.

Proof. We prove only the first assertion as the second assertion is implied from
the first assertion for −A. Note that A is non-positive semidefinite, i.e., there
is a vector v ̸= 0 such that ⟨Av, v⟩ < 0. First, suppose that A has exactly
one negative eigenvalue λ < 0 and v is an eigenvector of A corresponding to λ.
This implies

⟨Av, v⟩ = ⟨λv, v⟩ = λ∥v∥2 < 0.

Conversely, suppose that A = (aij)
k
i,j=1 is a non-positive semidefinite matrix,

i.e., there is a nonzero vector v such that ⟨Av, v⟩ < 0. Let λ1, . . . , λk be
eigenvalues of A. Without lost of generally, we may suppose that λ1, . . . , λm

are distinct (m ≤ k). Let Vi be an eigenspace of A corresponding to λi,
i = 1, . . . ,m. Therefore we may write Ck =

⊕m
i=1 Vi. For each i ∈ {1, . . . ,m},

there exists unique vector vi ∈ Vi, such that the above nonzero vector v ∈ Ck

can be written by v =
∑m

i=1 vi. This implies

⟨Av, v⟩ =
〈

m∑
i=1

Avi,

m∑
j=1

vj

〉
=

〈
m∑
i=1

λivi,

m∑
j=1

vj

〉
=

m∑
i=1

m∑
j=1

λi ⟨vi, vj⟩ .

Since λ1, λ2, . . . , λm are distinct, ⟨vi, vj⟩ = 0 for all i ̸= j. Thus

⟨Av, v⟩ =
m∑
i=1

λi ⟨vi, vi⟩ =
m∑
i=1

λi∥vi∥2.

Note that ⟨Av, v⟩ < 0, so there exists i ∈ {1, . . . ,m} such that λi∥vi∥2 < 0,
which says that λi < 0. Since A is CPD, by Lemma 2.16, A has at most one
negative eigenvalue. It follows that A has exactly one negative eigenvalue, and
the proof is complete. □

Lemma 2.19 ([2, Theorem 4.1.3]). Let A = (aij)
k
i,j=1 be a symmetric k × k

matrix. The following conditions are equivalent.
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(i) A is CPD.
(ii) There exits real number α1, α2, . . . , αk such that the matrix C = (aij −

αi − αj)
k
i,j=1 is positive semidefinite.

(iii) For any p > 0, the k × k matrix epA = (apaij )ki,j=1 is positive semidef-
inite.

Proposition 2.20 ([11, Theorem 6.3.13]). Let A = (aij)
k
i,j=1 be a k × k sym-

metric matrix with positive entries. Then A is infinitely divisible if and only if
logA = (log aij)

k
i,j=1 is CPD.

Proof. This is immediate from Lemma 2.19 (i) ⇔ (iii). □

Lemma 2.21 ([2, Theorem 4.4.2]). Let A = (aij)
k
i,j=1 be a k× k CND matrix

with postive entries and let F : (0,∞) → R be a completely monotone function.
Then the matrix F (A) = F (aij)

k
i,j=1 is positive semidefinite.

Corollary 2.22 ([11, Exercise 11, p.458]). Let A = (aij)
k
i,j=1 be a k×k matrix

such that aij > 0 for all i, j = 1, 2, . . . , k and −A = (−aij)
k
i,j=1 be CPD. Then

the k × k matrix of reciprocals A−1 = (aij
−1)ki,j=1 (not inverse matrix) is

infinitely divisible.

Proof. For each p > 0, we choose a function fp : (0,∞) → R defined by

fp(x) := x−p, x > 0.

It is easily seen that fp is completely monotone and −A is CPD, i.e., A is CND

with entries aij > 0. By Lemma 2.21, f(A) = A−p = (a−p
ij )ki,j=1 is positive

definite. Therefore, A−p = (a−p
ij )ki,j=1 ≥ 0 for all p > 0. □

Definition. Let γ = {γn}∞n=0 be a sequence of real numbers. The sequence
γ is said to be conditionally positive definite (CPD) if for all finite sequences

z0, z1, . . . , zk ∈ C such that
∑k

i=0 zi = 0,

k∑
i,j=0

γijziz̄j ≥ 0,(3)

that is, for any k ≥ 1, the (k + 1)× (k + 1) Hankel matrix (γi+j)
k
i,j=0

(γi+j)
k
i,j=0 =


γ0 γ1 . . . γk
γ1 γ2 . . . γk+1

...
...

...
...

γk γk+1 . . . γ2k

 is CPD.

Remark 2.23. (i) If a sequence of real numbers {γn}∞n=0 is positive definite
then it is CPD. Note, however, that the converse of this statement need
not necessarily hold.

(ii) A sequence of real numbers {γn}∞n=0 is CPD if and only if (3) holds for

all finite sequences z0, z1, . . . , zk ∈ R such that
∑k

i=0 zi = 0.
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(iii) It follows from the definition that if {γn}∞n=0 is CPD, then so is the
sequence {γn+2j}∞n=0 for every j ∈ Z+. However, it may happen that
{γn}∞n=0 is CPD but {γn+j}∞n=0 is not (e.g., γn = (−1)n).

The following fundamental characterization of conditional positive definite-
ness in terms of positive definiteness is essentially due to Schoenberg.

Lemma 2.24 ([5, Theorem 3.2.2]). If {γn}∞n=0 is a sequence of real numbers,
then the following conditions are equivalent.

(i) {γn}∞n=0 is CPD.
(ii) {epγn}∞n=0 is PD for every positive real number p.

We say that a sequence {γn}∞n=0 of real numbers is of exponential growth if
lim supn→∞ |γn|1/n < ∞, or equivalently if and only if there exist α, θ ∈ R+

such that

|γn|1/n ≤ αθn, n ∈ Z+.

Let Wα be a weighted shift with positive weight. Then the moment sequence
γ = {γn}∞n=0 is a sequence of exponential growth. Indeed,

0 < γn = α2
0α

2
1 · · ·α2

n−1 ≤ ∥Wα∥2n,
thus

γ
1
n
n ≤ ∥Wα∥2,

so lim supn→∞ |γn|1/n ≤ ∥Wα∥2 < ∞.

Definition. An operator T ∈ B(H) is said to be conditionally positive definite,
abbreviated CPD, if the sequence {∥Tnh∥2}∞n=0 is CPD for every h ∈ H.

Remark 2.25. Let Wα be a weighted shift with positive weight, {γn}∞n=0 be
the moment sequence of Wα. By [12, Theorem 3.1], the operator Wα is CPD
if and only if the moment sequence {γn}∞n=0 is a CPD sequence of exponential
growth.

2.4. Moment infinitely divisible (MID) weighted shifts

It is known that if we assume that Wα is contractive with the moment
sequence γ = {γn}∞n=0, then the following conditions are equivalent.

(i) Wα is subnormal.
(ii) The Hankel matrix Mγ(n, k) := (γn+i+j)

k
i,j=0 ≥ 0 for every n ≥ 0, k ≥

1.
(iii) The moment sequence {γn}∞n=0 is a Stieltjes moment sequence.
(iv) The sequences {γn}∞n=0 and {γn+1}∞n=0 are PD.
(v) The moment sequence {γn}∞n=0 is completely monotone.

Note that if Mγ(n, k) ≥ 0 then Mγ(n, k) is CPD. Moreover, if Mγ(n, k) is
CPD, then Wα is 2k-contractive, i.e. {γn}∞n=0 is 2k-monotone. Since {γn}∞n=0

is the moment sequence of contractive weighted shift Wα, {γn}∞n=0 is 2k-
hypermonotone and this holds for every k ≥ 1 ([4, Corolally 2.5]). Therefore
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the above condition (ii) implies that {γn}∞n=0 is 2k-hypermonotone for every
k ≥ 1, which means {γn}∞n=0 is completely monotone. We get the following
result.

Theorem 2.26. Assume that Wα is contractive with the moment sequence
γ = {γn}∞n=0. The following conditions are equivalent.

(i) Wα is subnormal.
(ii) Mγ(n, k) := (γn+i+j)

k
i,j=0 ≥ 0 for every n ≥ 0, k ≥ 1.

(iii) The moment sequence {γn}∞n=0 is completely monotone.
(iv) The sequences {γn}∞n=0 and {γn+1}∞n=0 are PD.
(v) The sequences {γn}∞n=0 and {γn+1}∞n=0 are CPD.

Definition. A weighted shift Wα with (positive) weight sequence {αn}∞n=0 is
moment infinitely divisible (MID) if, for every p > 0, the p-Schur power W ◦p

α

is subnormal.

By Theorem 2.26, if Wα is a contractive weighted shift then, the following
conditions are equivalent.

(i) Wα is MID, i.e., for every p > 0 , the p-Schur power W ◦p
α is subnormal.

(ii) Mγ(n, k) is ID for any n ≥ 0, k ≥ 1, i.e., for every p > 0 , the p-Schur
power Mp

γ (n, k) ≥ 0 for any n ≥ 0, k ≥ 1.
(iii) For any p > 0, the sequence γp = {γp

n}∞n=0 is complete monotone.
(iv) For any p > 0, the sequences {γp

n}∞n=0 and {γp
n+1}∞n=0 are PD.

(v) The sequences {γp
n}∞n=0 and {γp

n+1}∞n=0 are CPD.

SinceMγ(n, k) is a symmetric matrix with positive entries, by Proposition 2.20,
we get

Mγ(n, k) is ID ⇐⇒ logMγ(n, k) is CPD.

Similarly, we also get

Mγ(0,∞) and Mγ(1,∞) are ID ⇐⇒ logMγ(0,∞) and logMγ(1,∞) are CPD.

Moreover, by Lemma 2.6 we get the following results.

Theorem 2.27 ([3, Theorem 3.1]). Assume that Wα is contractive with the
moment sequence γ = {γn}∞n=0. The following conditions are equivalent.

(i) For any p > 0, the moment sequence γp = {γp
n}∞n=0 is complete mono-

tone, i.e., Wα is MID.
(ii) The sequence α = {αn}∞n=0 is log completely alternating.
(iii) The moment sequence γ = {γn}∞n=0 is log completely monotone.

In [4], C. Benhida, R. E. Curto, and G. R. Exner established some conditions
that are equivalent to contractive MID weighted shift. This result was extended
from the above mentioned theorem.

Theorem 2.28 ([4, Theorem 3.4]). Assume that Wα is contractive with the
moment sequence γ = {γn}∞n=0. Then the following statements are equivalent.

(i) Wα is MID.
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(ii) logMγ(0,∞) and logMγ(1,∞) are CPD.
(iii) logMγ(n, k) is CPD for any n ≥ 0, k ≥ 1.
(iv) ∀p > 0,Mp

γ (0,∞) ≥ 0 and Mp
γ (1,∞) ≥ 0.

(v) ∀p > 0, Mp
γ (0,∞) and Mp

γ (1,∞) are CPD.
(vi) The moment sequence γ = {γn}∞n=0 is log completely monotone.
(vii) The sequence α = {αn}∞n=0 is log completely alternating.

In view of the results in Theorem 2.28, we plan to extend the notion of
moment infinite divisibility to arbitrary operators T ∈ B(H).

Question 2.29. (see [4, Problem 3.5]) How to extend the notion of moment
infinite divisibility for weighted shift to arbitrary operators on Hilbert space?

There are some ideas to extend the notion of moment infinite divisibility
for weighted shifts to arbitrary operators on Hilbert space. In [4, Problem
3.5], one can try to do so by using the polar decomposition factor. That is we
consider the subnormality of V |T |p for all p > 0 as the proper analog of moment
infinite divisibility. The polar decomposition factor of a weighted shift Wα is
Wα = UDα, where U is the unilateral shift and Dα = diag{αn}. Also, for any
p > 0, p-Schur power W ◦p

α has the polar decomposition factor W ◦p
α = UDp

α.
However, finding the polar decomposition factor of an arbitrary operator T
is not easy. In Section 3, we define infinitely divisible sequences. Should we
consider the infinite divisibility of the sequence {∥Tnh∥2}∞n=0 for any h ∈ H
as the proper analog of moment infinite divisibility for an arbitrary operator
T ∈ B(H)?

3. A bridge between ID moment sequences and MID weighted
shifts

Definition. Let γ = {γn}∞n=0 be a sequence of real numbers. The sequence γ
is said to be infinitely divisible (ID) if for any p > 0, the sequence γp = {γp

n}∞n=0

is positive definite.

Lemma 3.1. Let a = {an}∞n=0 and b = {bn}∞n=0 be ID sequences. Then

(i) The sequence {λan}∞n=0 is ID for any λ > 0.
(ii) The sequence {arn}∞n=0 is ID for any r > 0.
(iii) The Schur product sequence {anbn}∞n=0 is also ID.

(iv) If an ̸= 1 for any n ≥ 0, the sequence 1
1−a =

{
1

1−an

}∞

n=0
is ID.

Proof. The statements (i), (ii), and (iii) are trivial. We need only to prove the
statement (iv). Note that for any positive real number r > 0,

1

(1− a)r
=

∞∑
m=0

αmam,

where α0 = 1 and αm = r(r + 1) . . . (r +m+ 1)/m!.
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Since a = {an}∞n=0 is ID, this implies am = {amn }∞n=0 is ID for any m ≥ 0.

Note that αm ≥ 0 for any m, then αmam is ID. Therefore
∑M

m=0 αmam is ID
for any M ≥ 1. Taking M → ∞, we get the result. □

We now consider a weighted shift Wα with the moment sequence γ =
{γn}∞n=0. By Theorem 2.26, we know that the subnormality of a contrac-
tive weighted shift Wα is equivalent to the CPD of sequences {γn}∞n=0 and
{γn+1}∞n=0. Moreover, Wα is CPD if and only if {γn}∞n=0 is CPD (see Remark
2.25). Note that Wn

α e0 = γn for every n ≥ 0. This situation is well-captured
by the following diagram.

Wα is subnormal

{γn}∞n=0 is completely monotone{γn+j}∞n=0 is PD for any j ≥ 0

{γn}∞n=0 and {γn+1}∞n=0 are PD {γn}∞n=0 and {γn+1}∞n=0 are CPD

{γn+j}∞n=0 is CPD for any j ≥ 0

Wα is CPD

{γn}∞n=0 is CPD{γn}∞n=0 is PD

Therefore we get the following result, which we restate from Section 1 for
the reader’s convenience.

Lemma 3.2. Let Wα be a weighted shift with positive weight, γ = {γn}∞n=0 be
the moment sequence of Wα. Assume that Wα is contractive, then the following
conditions are equivalent.

(i) Wα is subnormal.
(ii) γ = {γn}∞n=0 is PD.

Note that a weighted shift Wα is subnormal if and only if {γn+j}∞n=0 be PD
for any j ≥ 0. Observe that in the following theorem, we do not assume the
contractivity condition.

Theorem 3.3. Let Wα be a weighted shift with positive weight and {γn}∞n=0

be the moment sequence of Wα. The statements are equivalent.

(i) Wα is subnormal.
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(ii) {γn+j}∞n=0 is PD for any j ≥ 0.
(iii) {γn}∞n=0 is PD.

Proof. It is trivially that (i) =⇒ (ii) =⇒ (iii). We need only to prove (iii)

=⇒ (i). Assume that {γn}∞n=0 is PD. Let m := ∥Wα∥ > 0, and W
′

α be the

weighted shift with the weight sequence α
′
= {α′

n}∞n=0, where α
′

n = αn/m for

each n ≥ 0. The moment sequence γ
′
= {γ′

n}∞n=0 of the weighted shift W
′

α

satisfies {
γ

′

0 = 1,

γ
′

n = α
′2
0 . . . α

′2
n−1 =

γn
mn

.

For each k ≥ 1,

(γ′
i+j)

k
i,j=0 =


γ′
0 γ′

1 . . . γ′
k

γ′
1 γ′

2 . . . γ′
k+1

...
...

...
...

γ′
k γ′

k+1 . . . γ′
2k

 =


1 γ1

m . . . γk

mk
γ1

m
γ2

m2 . . . γk+1

mk+1

...
...

...
...

γk

mk

γk+1

mk+1 . . . γ2k

m2k



=


γ0 γ1 . . . γk
γ1 γ2 . . . γk+1

...
...

...
...

γk γk+1 . . . γ2k

 ◦


1 1

m . . . 1
mk

1
m

1
m2 . . . 1

mk+1

...
...

...
...

1
mk

1
mk+1 . . . 1

m2k

 ,

where ◦ denotes the Schur product. Now write

Mk :=


1 1

m . . . 1
mk

1
m

1
m2 . . . 1

mk+1

...
...

...
...

1
mk

1
mk+1 . . . 1

m2k

 ,

and for any vector x = (xj)
k
j=0 ∈ Ck+1, we have that

Mkx =



k∑
j=0

1
mj xj

k∑
j=0

1
mj+1xj

...
k∑

j=0

1
mj+k xj


=



k∑
j=0

1
mj xj

1
m

k∑
j=0

1
mj xj

...

1
mk

k∑
j=0

1
mj xj


.

It thus follows that

⟨Mkx, x⟩ =
k∑

j=0

1

mj
xjx0 +

1

m

k∑
j=0

1

mj
xjx1 + · · ·+ 1

mk

k∑
j=0

1

mj
xjxk



A NEW CRITERION FOR MID WEIGHTED SHIFTS 455

=

k∑
j=0

1

mj
xjx0 +

k∑
j=0

1

mj
xj

1

m
x1 + · · ·+

k∑
j=0

1

mj
xj

1

mk
xk

=

k∑
j=0

1

mj
xj

k∑
j=0

1

mj
xj

=

∣∣∣∣∣∣
k∑

j=0

1

mj
xj

∣∣∣∣∣∣
2

≥ 0.

Hence Mk ≥ 0 for any k ≥ 1. Note that γ = {γn}∞n=0 is PD, i.e.,

(γi+j)
k
i,j=0 =


γ0 γ1 . . . γk
γ1 γ2 . . . γk+1

...
...

...
...

γk γk+1 . . . γ2k

 is PD, ∀ k = 1, 2, . . . .

For each k ≥ 1, the Hankel matrix (γ′
i+j)

k
i,j=0 generated by Schur product

between two positive matrices is also positive. By Theorem 2.26, the weighted
shift W

′

α is subnormal. Since W
′

α = 1
mWα, the weighted shift Wα is also

subnormal, and this completes the proof. □

Corollary 3.4. Let Wα be a weighted shift with positive weight, γ = {γn}∞n=0

be the moment sequence of Wα. The following statements are equivalent.

(i) Wα is MID.
(ii) {γn}∞n=0 is ID.
(iii) {γn+j}∞n=0 is ID for every j = 0, 1, . . ..

Proof. Assume that Wα is MID, i.e., for any p > 0, Wαp is subnormal. Note
that the moment sequence of Wαp is {γp

n}∞n=0. It thus follows from Theorem
3.3 that γp = {γp

n}∞n=0 is semipositive definite for any p > 0. □

Corollary 3.5. Let Wα and Wβ be MID weighted shifts. Then

(i) λWα is MID for any λ ≥ 0.
(ii) The p-Schur power W ◦p

α is MID for any p ≥ 0.
(iii) The Schur product WαWβ = Wαβ is MID.

4. (k, 0)-CPD weighted shifts

We consider weighted shift operators having the property of conditionally
positive definite moment matrices. Let a = {an}∞n=0 be a sequence of real
numbers, k ≥ 1, and i ≥ 0. We denote that M∇2m(a)(i, k −m) is the Hankel
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matrix of size k + 1 by k + 1 given by

Ma(i, k) =


ai ai+1 . . . ai+k

ai+1 ai+2 . . . ai+k+1

...
...

...
...

ai+k ai+k+1 . . . ai+2k

 .

Definition (see [4]). Let Wα be a weighted shift with nonzero weight sequence
{αn}∞n=0. Then for each k, 0 ≤ m ≤ 2k, Wα is said to be (k, 2m)-CPD if the
moment sequence {γk}∞k=0 is (k, 2m)-CPD, i.e., for every i ≥ 0, the matrix
M∇2m(γ)(i, k −m) is CPD.

For fixed k ≥ 1, we consider (k, 0)-CPD weighted shift Wα with {γn}∞n=0

is the moment sequence, i.e., for every n ≥ 0, the following Hankel matrix
Mγ(n, k) := (γn+i+j)

k
i,j=0 is CPD.

Example 4.1. For x > 0, let Tx be the weighted shift whose weight sequence
is given by

√
x,

√
2

3
,

√
3

4
,

√
4

5
, . . . .

Then

(i) Tx is subnormal ⇔ 0 < x ≤ 1
2 .

(ii) Tx is k-hyponormal ⇔ 0 < x ≤ (k+1)2

2k(k+2) .

In particular, Tx is 2-hyponormal ⇔ 0 < x ≤ 9
16 .

(iii) Tx is quadratically hyponormal (weakly 2-hyponormal) ⇔ 0 < x ≤ 2
3 .

(iv) Tx is (2, 0)-CPD if and only if 0 < x ≤ 4
7 .

Proof. The proof of (i), (ii) and (iii) is easily seen in [14, Theorem 4.3.5]. Also,
we need only prove (iv). It is sufficient to show that for each n = 0, 1, . . .

Mγ(n, 2) :=

 γn γn+1 γn+2

γn+1 γn+2 γn+3

γn+2 γn+3 γn+4

 is CPD.

Note that

γ0 = 1, γ1 = x, γ2 =
2

3
x, γ3 =

1

2
x, γ4 =

2

5
x, . . . , γn =

2

n+ 1
x, . . . .

For n ≥ 1,

Mγ(n, 2) = x


2

n+1
2

n+2
2

n+3

2
n+2

2
n+3

2
n+4

2
n+3

2
n+4

2
n+5

 ≥ 0,
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and so Mγ(n, 2) is CPD. We now need only to check for n = 0. Indeed,

Mγ(0, 2) = x


1
x 1 2

3

1 2
3

1
2

2
3

1
2

2
5

 ,

and it thus follows from Lemma 2.15 that Mγ(0, 2) is CPD if and only if the
following matrix B is positive semidefinite

B =

(
1
x − 4

3
1
6

1
6

1
15

)
.

Note that B ≥ 0 ⇔ x ≤ 4
7 . Thus Tx (k, 0)-CPD if and only if 0 < x ≤ 4

7 . □

Proposition 4.2. Let Wα be a unilateral weighted shift with weight sequence
α = {αn}∞n=0. Then

(i) If Wα is hyponormal then Wα is (1, 0)-CPD. Moreover, if Wα is para-
normal then Wα is (1, 0)-CPD.

(ii) If Wα is (k + 1, 0)-CPD then Wα is (k, 0)-CPD.

Proof. (i) Assume that {γn}∞n=0 is the moment sequence of Wα. Then Wα is
hyponormal, i.e., (

γn γn+1

γn+1 γn+2

)
≥ 0 ⇔ √

γnγn+2 ≥ γn+1.(4)

Since γn+γn+2

2 ≥ √
γnγn+2, it thus follows from (4) that

γn − 2γn+1 + γn+2 ≥ 0.

This implies (
γn γn+1

γn+1 γn+2

)
is CPD.

By Definition 4, Wα is (1, 0)-CPD, and this is the desired conclusion.
Next, we assume that Wα is paranormal. Recall that Wα is paranormal if and
only if for every n ≥ 0,

α2
nα

2
n+1 − 2λα2

n + λ2 ≥ 0, ∀λ > 0.(5)

Note that Wα is (1, 0)-CPD if and only if for every n ≥ 0,(
γn γn+1

γn+1 γn+2

)
is CPD

⇔ γn − 2γn+1 + γn+2 ≥ 0

⇔ 1− 2α2
n + α2

nα
2
n+1 ≥ 0.

By choosing λ = 1 in (5), we get Wα is conditionally hyponormal.
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(ii) Assume that Wα is (k + 1, 0)-CPD. By Definition 4,

Mγ(n, k + 1) =


γn γn+1 . . . γn+k γn+k+1

γn+1 γn+2 . . . γn+k+1 γn+k+2

...
...

...
...

...
γn+k γn+k+1 . . . γn+2k γn+2k+1

γn+k+1 γn+k+2 . . . γn+2k+1 γn+2k+2

 is CPD.

This implies

Mγ(n, k) =


γn γn+1 . . . γn+k

γn+1 γn+2 . . . γn+k+1

...
...

...
...

γn+k γn+k+1 . . . γn+2k

 is CPD.

Hence Wα is (k, 0)-CPD, and the proof is complete. □

Remark 4.3. The converse of the first statement in Proposition 4.2 need not
necessarily hold. For example, Wα is the weighted shift whose weight sequence
is given by

1

2
,
1

4
, x, x, . . . ,

where x ≥ 1
4 . We see that the above Wα is not hyponormal. But Wα is (1, 0)-

CPD. Indeed, Then γ0 = 1, γ1 = 1
4 , γ2 = 1

64 , γn = 1
64x

2(n−2) for n ≥ 2.
For n ≥ 2, (

γn γn+1

γn+1 γn+2

)
=

1

64

(
x2(n−2) x2(n−1)

x2(n−1) x2n

)
≥ 0

So we only need to check for n = 0 and n = 1. For n = 1, since x ≥ 1
4 ,(

γ1 γ2
γ2 γ3

)
=

(
1
4

1
64

1
64

1
64x

2

)
≥ 0.

For n = 0, we see that (
γ0 γ1
γ1 γ2

)
=

(
1 1

4

1
4

1
64

)
is CPD.

Hence Wα is (1, 0)-CPD.

Moreover, G.R. Exner, I.B. Jung, and S.S. Park proved for general operators
that k-hyponormality implies 2k-contractivity (see [9, Theorem 1.2]). Actually,
we need only the weakly positivity of Ek(T ) := ([T ∗i+j , T i+j ])ki,j=0) to get
2k-contractivity. Applying the technique in the proof of [9, Theorem 1.2],
we show that if a weighted shift Wα is (k, 0)-CPD, i.e., the moment matrix
Mγ(n, k) := (γn+i+j)

k
i,j=0 is CPD for any n ≥ 0 then Wα is 2k-contractive.

Indeed, if Mγ(n, k) is CPD, we put λ is the column vector of length k+1 with
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j-th coordinate λj = (−1)j
(
k
j

)
, j = 0, 1, . . . , k. Observe that

∑k
j=0 λj = 0.

Since Mγ(n, k) is CPD, we get ⟨Mγ(n, k)λ, λ⟩ ≥ 0. By Vandermonde’s identity,
for each n ≥ 0 we get

⟨Mγ(n, k)λ, λ⟩ =
2k∑
l=0

(−1)l
l∑

j=l−k

(
k

j

)(
k

l − j

)
γn+l =

2k∑
l=0

(−1)l
(
2k

l

)
γn+l.

Lemma 4.4. Let Wα be a unilateral weighted shift with weight sequence α =
{αn}∞n=0. If Wα is (k, 0)-CPD then Wα is 2k-contractive.

We observe that if the shiftWα is 2k-contractive then it also is 2j-contractive
for any j ≤ k. And this result is a specific case of [4, Proposition 3.7].

Corollary 4.5. Let Wα be a contractive unilateral weighted shift with weight
sequence α = {αn}∞n=0. Then the following conditions are equivalent.

(i) Wα is (k, 0)-CPD for every k ≥ 1.
(ii) Wα is subnormal.

Proof. Assume that Wα is (k, 0)-CPD for every k ≥ 1. By Lemma 4.4, Wα is
2k-contractive for every k. Since Wα is contractive, Wα is 2k-hypercontractive
for every k, i.e. Wα is j-contractive for every j ≥ 1. This implies Wα is
subnormal. □

Concluding Remarks

Observe that the properties of a weighted shift can be explicitly expressed
by its moment sequence. As mentioned in Section 4, we consider (k, 0)-CPD
weighted shifts having the property of conditionally positive definite moment
matrices. However, we use the term “k-CPD” instead of “(k, 0)-CPD” for
convenience. Also, we give a definition of “k-CPD sequences”. A sequence of
real numbers γ = {γn}∞n=0 is said to be k-CPD if the Hankel moment matrix
Mγ(n, k) := (γn+i+j)

k
i,j=0 is CPD for any n ≥ 0. Observe also that a weighted

shift is k-CPD if and only if its moment sequence is k-CPD. We can investigate
more properties of k-CPD weighted shifts by making some relations among
properties of moment sequences, such as k-monotone, k-CPD sequences,. . . .

We also try to extend the notion of the moment infinitely divisibility for
weighted shifts to arbitrary contractions on Hilbert space as we mentioned in
Question 2.29. Moreover, we can consider MID weighted shifts on quaternionic
Hilbert spaces. Some results that are too similar to the case of complex Hilbert
spaces may be omitted. We plan to pursue these matters in future research.
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