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TOPOLOGICAL ENTROPY OF A SEQUENCE
OF MONOTONE MAPS ON CIRCLES

YUJUN ZHU, JINLIAN ZHANG, AND LIANFA HE

ABSTRACT. In this paper, we prove that the topological entropy
of a sequence of equi-continuous monotone maps fi,00 = {fi}i21

on circles is h(f1,00) = hm sup Liog H | deg fi|. As applications,

we give the estimation of the entrop1es for some skew products on
annular and torus. We also show that a diffeomorphism f on a
smooth 2-dimensional closed manifold and its extension on the unit
tangent bundle have the same entropy.

1. Introduction

The concept of topological entropy was originally introduced by Adl-
er, Konheim, and Mcandrew [1] as an invariant of topological conjugacy
and a numerical measure for the complexity of a dynamical system.
Later, Bowen [2] and Dinaburg [3] gave an equivalent definition when
the space under consideration is metrizable. We can see [12] for the
definition and main properties of it. With the development of the study
of nonautonomous dynamical systems, recently, Kolyada and Snoha (7]
introduced and studied the notion of topological entropy for a sequence
of endomorphisms of a compact topological space. For other recent
results about entropy one can see [4], [9], [11], etc.

The systems on circle play an important role in the study of one di-
mensional dynamical systems. In [5] and [12] the authors studied the
entropies of homeomorphism and monotone continuous map on circle re-
spectively. Our purpose is to study the topological entropy of a sequence

Received December 29, 2004. Revised November 28, 2005.

2000 Mathematics Subject Classification: 37B40, 37B55.

Key words and phrases: sequence of continuous maps, topological entropy, sepa-
rated set, spanning set.

Research Supported by the National Natural Science Foundation of China
(No0:10371030), the Tianyuan Mathematics Foundation of China (No0:10426012) and
the Doctor’s Foundation of Hebei Normal University (No:L2003B05).



374 Yujun Zhu, Jinlian Zhang, and Lianfa He

of monotone maps on circles. In section 2, by estimating the cardinal
of the spanning set and the separated set, we prove that the topological
entropy of a sequence of equi-continuous monotone maps f1 o = {fi}$2;
3
is A(f1,00) = limsup % log [ |deg fi|- In section 3, as applications, we
n—o0 3

1=1
give the estimation of the entropies for some skew products on annu-

lar and torus. We also show that a C! diffeomorphism f on a smooth
2-dimensional closed manifold M and its extension D! f on the unit tan-
gent bundle SM have the same entropy, i.e., h(f) = h(Df).

Let (X, d) be a compact metric space and {f;}$2, a sequence of con-
tinuous maps on X. The identity map on X will be denoted by Id. Let
N be the set of all positive integers. For any i € N, let f? = Id and for
any 7, n € N, let

I = fivn—ryo---ofiyiofi, fit=(M""=fTlofF o0 i:-l(n—l)'

(f~! will be applied to sets, we don’t assume that the maps f; are
invertible). Denote by fi1,. the sequence {f;}32, and the dynamical

system (X, {f;}2;). Finally, denote by fl[tﬂo the sequence of maps
[l _ *
U= o),

Let {fi}32, be a sequence of continuous maps of compact metric space

(X,d). For any n € N, define a new metric d,, on X by
dn(,y) = | max d(fi(2), fi(v)-

For any € > 0, a subset £ C X is said to be an (n, fi «,€) spanning set
of X, if for any z € X, there exists y € E such that d,(z,y) < e. Let
7(n, f1,00,€) denote the smallest cardinality of any (n, f1 0, €)-spanning
set of X. A subset F' C X is said to be an (n, fi1,0,€)-separated set of
X, if z,y € F,xz # y, implies d,(z,y) > e. Let s(n, f1,00,€) denote the
largest cardinality of any (n, fi c0,¢)-separated set of X. It’s easy to
prove that (similar to the proof for the autonomous system in [12])

€
7'(77,, f1,007€) < s(n, fl,oovs) < T(na .fl,oo, 5)
DEFINITION 1.1. Let fio = {fi}{2; be a sequence of continuous

maps of compact metric space (X,d), then the topological entropy of
f1,00 is defined by ’

1 1
h(fi,00) = lim limsup — log 7(n, f1,c0,€) = lim limsup — log s(n, f1,00,€)-
’ E— n—oo 1 ! e—~0 noco N ’
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Furthermore, we can see the equivalent definition using open covers in
7).

Let S* be a circle with the “geodesic” metric, in which S has length
1 and the distance between two points is the length of the shortest path
joining them. Let f : S' — S! be a continuous surjective map and
F:R! — R! alift of f, we say f is monotone if F' is monotone. Denote
by deg f the degree of f (see [13)).

2. The main result

The main result of this paper is:

THEOREM 2.1. Let f100 = {fi}2, be a sequence of equi-continuous
monotone maps of S*. Then

| o
h(f1.00) = limsup - 1 deg fil.
(fi,00) = limsup —log ] | | deg fi

i=1

We will prove this theorem using the idea in [6]. Let f : ST — S?!

be a continuous monotone map, |deg f| = k. Then for any z € S,
f~Y(z) is a set consist of k points, denote f~}(z) = {z1,z2,...,Zn}. Let
a1 = (T1,22),- ., k-1 = (Tp—1, %), 05k = (Tk,21). Then we get a

finite partition &f = {af1,052,...,a5%} of S, where f(as;) = S* and
af,iﬂaf,j=(2)for1§i7éj§k.

LEMMA 2.2. Let fi0o = {fi}{2; be a sequence of equi-continuous
monotone maps of S1. Then there exists a constant a > 0, such that
for every f;(i > 1) and any partition §5, = {af, 1,052, -, 0k } of St
defined as above, we have

diam ay,; > a, 1 < j < k;,
where k; = | deg f;l. '

1=
a constant a > 0 such that

d(z,y) < a = d(fi(z), fily)) <e, VieN, z,y € S*.

Note that for every f;(¢ > 1) and any partition &, = {ay,1,05,2,. -,
of, k. } of S* defined as above, fi(a,;) = S*(1 < j < k;) and diam S* =
1, we have diam ay, ; > a, 1 < j < k;. O

Proof. Since {f;}$2, is equi-continuous, then for ¢ = %, there exists
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LEMMA 2.3. Let fio = {fi}2, be a sequence of equi-continuous
monotone maps of St, {&;, = {af 1,062, 055 }}2, be any se-
quence of partitions of S' defined as above. Then for the new sequence
of partitions of S*

{ffp = {ff " Naps) | of €&, 15 < kn}}n:

we have

h(f1,00) < limsup —logcard & < h(f1,00) +log 2.

n—oo

Proof. For any z € S, let By(x,¢) = {y € S* | d(z,y) < €}. By the
definition of {sn, for any given n € N, there are n — 1 new partitions of
St &, = {a}hl,a}i,Z, e ,a}i’ki}, 1 <i<mn-—1,such that

n
—(i—1 .
gy = {ﬂ 150l ) el €8 1< < k}

i=1
by Lemma 2.2, diam a/fi,j >aforany1<i<n-—1,1<j5<k;.

Let 0 < ¢ < %(the meaning of @ is in Lemma 2.2), and E be an
(n, f1,00,€)-spanning set of minimal cardinality of S!. It can be seen
that for any z € E and 0 < ¢ < n—1, the e-neighborhood By4(fi(z),e) of
f¥(z) intersects at most 2 elements of & f,- S0 By, (z, £) intersects at most
2" elements of {fn. By the definition of spanning set, |J Ba,(z,¢) = St

z€E
then card {sp < 2"card E. Therefore,

(1) lim sup 1 log card {sn < h(f1,00) + log 2.
n—oc

Now we take an arbitrary 0 < ¢ < % and choose an (n, f1,00,€)-
separated set F' of maximal cardinality of S1. By the definition of sep-
arated set, for any a € & s¢ and any two adjacent points z,y in a N F,
there exists j with 0 < j < n — 1 such that d(f(x), fI(y)) > e. Since
f1 is monotone on «, then f1 (z) and fl( ) are also two adjacent points.
Hence, for each 0 < 7 < n — 1, there are at most M = [%] + 1 pairs ad-
jacent points which are more than ¢ apart in f{ (a N F). We claim that
there are at most nM + 1 points in & N F. In fact, if there are nM 4 2
points in aN F', then there are at least nM + 1 pairs adjacent points. As
mentioned above, for any two adjacent points x,y in a N F, there exists
j with 0 < 5 < n — 1 such that d(f{(z), f{(y)) > . This implies that
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there exists at least one 0 < s < n — 1 such that d(f{(z), f{(y)) > € for
at least M +1 pairs adjacent points. This contradicts with the definition
of M.

In such a way, we have card(a N F)) < nM + 1. Hence, cardF' <
(nM 4+ 1) card {gp. Furthermore, we have

1 1 1
—1log s(n, f1,00,€) < — logcard £gr + ~log(nM + 1).
n n n
Letting n — oo, we have
1
lim sup — log $(n, f1,00,€) < limsup — log card {p.
n—oo N n—00

Taking limits as ¢ goes to 0 establish the following inequality:

(2) h(f1,00) < lim sup = log card &gp.

n—od

Then (1) and (2) yields

h(f1,00) < lim sup — L 1og card £ < h(fio0) + log2.

n—od

O

Let f1.00 = {fi}32; be a sequence of equi-continuous monotone maps
of S1. It is easy to see that for any m € N, the sequence f1 0o Still be
a sequence of equi- contmuous monotone maps of S. For 51mp11ﬁcat10n
we denote g1.00 = floo, ie., g1.00 = {9i}i2,, where g; = f[m, it € N.
Accordingly, we can construct a new sequence of finite partltlons of §1
{¢n )52, from the sequence of finite partitions of St {£5,}22, , where
&y = £y, mEN.

LEMMA 2.4. Let m be any given positive integer. Then for the
sequence of maps g1, defined as above and the relevant sequence of
partition {§gn }52.,, we have

lim sup — log card {gr = mlimsup — log card §p.
n—oo T n—00

Proof. By Lemma 2.2, for any i € N, card £, < N := [%] + 1. Then,
for any positive integer n = Im + j, 0 < j < m — 1, we have

card fﬁm < card §gp < N™card fﬁm.
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So
1
limsup — log card {¢p = limsup -— logcard § fim
n—oo 1 l—00 lm
1 1
= — limsup — logcard ¢, L
m |-
Therefore,

1 1
lim sup — log card {yz = mlim sup log card {p.
n—oo T n—00

O

LEMMA 2.5. ([7]). If f1,00 = {fi}2, is a sequence of equi-continuous
maps on a compact metric space, then for any m € N, we have

h(FT) = m - h(f1,00).

Proof of Theorem 2.1. For any € > 0, take m € N such that 191%2 <e.
Since f1,00 is a sequence of monotone equi-continuous maps on Sl as
mentioned above, it is easy to see that g1 = 1[ 01, is also a sequence of
equi-continuous monotone maps on St By Lemma 2.3, we get

1
h(fi [m] ) < limsup - log card £gp < h(f; [m] ) + log 2.

n—oo

Using Lemmas 2.4 and 2.5, and notice the way m is taken, we get

h{fi,00) < limsup ! logcard Erp < A(f1,00) +E

n—0o0

n
Since € is arbitrary, noting that card s = [] | deg fi|, we get immedi-
i=1
ately
1
M(f1,00) = limsup - log H | deg fil.

=1
O

COROLLARY 2.6. If f1 oo = {fi}{2, is a sequence of equi-continuous
monotone maps of S*, and the absolute values of the degrees of the
mappings are the same, denote it by k, then h(f1,0) = logk.

In particular, (Theorem in [5]) If f : S* — S! is a continuous mono-
tone map, then h(f) = log|deg f|.
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COROLLARY 2.7. If every element of the sequence {f;}2, on St is
chosen from a set consisted of finite continuous monotone maps, then

1 n
= limsup - 1 .
Al f1,00) = limsup = log ] | | deg fi

i=1

Proof. 1t is only to note that the continuous map on compact space
is uniformly continuous, and finite uniformly continuous maps are equi-
continuous. o

COROLLARY 2.8. Let f be an expansive map of S!, i.e., f be of
C', and for every lift F : R — R! of it, |[F'(z)] > 1, Vz € R. If
{f:}2, are generated by sufficiently small C*-perturbation of f, then
h(f1,00) = log | deg f|.

Proof. Note that the expansive map of S! is strictly monotone and
structurally stable ([13]). Also note the degree of the mapping is an
invariant of topological conjugacy. Therefore, if every element of { f;}$2;
is chosen from the sufficiently small C-neighborhood of f, then {f;}2;
must be a sequence of equi-continuous monotone mappings, and deg f; =
deg f, Vi € N. From Lemma 2.6, we have h(f1,0) = log|deg f|. O

3. Applications

ProprosITION 3.1. ([2]). Let X, Y be compact metric spaces, F :
X — X, f:Y — Y be continuous maps, 7 : X — Y be a surjective
continuous map, and satisfy moF' = fom, that is, f and F' are topological
semi-conjugate and f is the factor of F. Then

h(f) < h(F) < h(f) + sup h(F, 7 (y)).

Let X, Y be compact metric spaces. A continnous map F : X xY —
X x Y is called a skew-product, if there exist a continuous map f of X
and a set of continuous maps {g; | ¢ € X} of Y which depend on z
continuously, such that F(z,y) = (f(z),9.(¥)),Yz € X, y € Y. By
Proposition 3.1, we can get that: for the skew-product F' : X x Y —
X xY, we have

h(f) < W(F) < h(f) + sup h(F, 7" (x)),

where 7: X XY — X, (z,y) — z is the natural projection.
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ProposSITION 3.2. ([10]). If f is a piecewise monotone continuous
self-map of I, then

1
h(f) = lim —logCy,
n—oo N
where C,, denotes the number of pieces of monotonicity of f".

COROLLARY 3.3. (1) Let F(z,y) = (f(x),9:(y)) be a skew product
of annular I x S*. If f is piecewise monotone, {g, | * € I} is a sequence
of equi-continuous monotone maps, then

1
lim —logC, < h(F)

n—oo n
1 1 n—1
< lim —logCy, + suplimsup — log H | deg gfi(z)l.
n—oo n ze] n—oo M o

(2) Let F(z,y) = (f(x),9:(y)) be a skew product of torus S x S*.
If {f}U{gs | z € S} is a sequence of equi-continuous monotone maps,
then
n—1

1
log | deg f| < h(F) < log|deg f| + sup limsup — log H | deg ggia) |-

n
reSl n—oo i—0

Proof. Firstly, note that for any skew product F: X XY — X XY,
and any x € X, we have

W(EF, 774 (z)) = h({gfi-1)}221)-

From Propositions 3.1, 3.2 and Theorem 2.1, we can get (1). From
Proposition 3.1, Corollary 2.6 and Theorem 2.1, we can get (2). O

Let (M,p) be a smooth 2-dimensional closed manifold (i.e., M is
compact and without boundary), TM be the tangent bundle of M. We
denote |- |, || - || and d(-,-) , respectively, the norm on T'M, the operator
norm and the metric on M induced by the Riemannian metric. Denote

by SM = |J SrM the unit tangent bundle of M, where S;M = {u €
TEM
T.M | |u| = 1}. Note that SM is a compact metric space and its

metric d can be derived from p. That is, the restriction of d on S; M is
consistent with the restriction of the metric of T,,M, which derived from
the inner product p,, on S, M.

Let f : M — M be a C! diffeomorphism, Df : TM — TM be the

tangent map of f. Let DY f : SM — SM, u — @}cggzp u € Ty M. Then

(SM, D*f) is a compact topological system, we also call it the eztension
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of f on the unit tangent bundle. One can see [8] for some connections
of the dynamics between f and its extension D?f.

PROPOSITION 3.4. Let f : M — M be a C! diffebmorphism on a
smooth two-dimensional closed Riemannian manifold M , and Dff be
its extension on the unit tangent bundle SM. Then

h(f) = h(D*f).

Proof. Let m: SM — M, u — z, u € S; M be the natural projection.
It is easy to verify that 7 o D¥f = f o w. By Proposition 3.1, we have

3) h(f) < R(D*f) < h(f) + sup (D f,m = (x)).

Since M is compact, f is a C* diffeomorphism, then we can take
M= D = min ||D .
max | Df(z)]l, m = min |Df(z)]
For any z € M, u,v € Sz M, we have
d(D*f(z)u, D f (z)0)
- ]Dﬁ f(@)u — D! f(a:)v‘

Df(z)u _ Df(z)v
[Df(z)ul  [Df()v]

1
in( Yol D7y 1P @l Df @@y — DS (@)ul - Df (@)

< 5 IDf(l - [Df()(w ~ v)] - [IDf(@)ul - IDf(@)e]] - D)ol
< —5[MA(u—v) + M|DS(2)(u )]

2M2
< 2 Iu_'U|

This shows that {Dff(z) | € M} are equi-continuous with respect to
d.

Since Dif(z) : SeM — S #(zyM is a homeomorphism, then it is mono-
tone and | deg D! f(z)| = 1. Hence, from Theorem 2.1 and Corollary 2.6,
we have h(D! f, 7~1(x)) = 0 for any € M. Therefore, from (3) we have

h(f) = h(Df).
|
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