TOPOLOGICAL ENTROPY OF A SEQUENCE OF MONOTONE MAPS ON CIRCLES

YUJUN ZHU, JINLIAN ZHANG, AND LIANFA HE

ABSTRACT. In this paper, we prove that the topological entropy of a sequence of equi-continuous monotone maps $f_{1,\infty} = \{f_i\}_{i=1}^\infty$ on circles is $h(f_{1,\infty}) = \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=1}^n |\deg f_i|$. As applications, we give the estimation of the entropies for some skew products on annular and torus. We also show that a diffeomorphism f on a smooth 2-dimensional closed manifold and its extension on the unit tangent bundle have the same entropy.

1. Introduction

The concept of topological entropy was originally introduced by Adler, Konheim, and Mcandrew [1] as an invariant of topological conjugacy and a numerical measure for the complexity of a dynamical system. Later, Bowen [2] and Dinaburg [3] gave an equivalent definition when the space under consideration is metrizable. We can see [12] for the definition and main properties of it. With the development of the study of nonautonomous dynamical systems, recently, Kolyada and Snoha [7] introduced and studied the notion of topological entropy for a sequence of endomorphisms of a compact topological space. For other recent results about entropy one can see [4], [9], [11], etc.

The systems on circle play an important role in the study of one dimensional dynamical systems. In [5] and [12] the authors studied the entropies of homeomorphism and monotone continuous map on circle respectively. Our purpose is to study the topological entropy of a sequence

Received December 29, 2004. Revised November 28, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 37B40, 37B55.

Key words and phrases: sequence of continuous maps, topological entropy, separated set, spanning set.

Research Supported by the National Natural Science Foundation of China (No:10371030), the Tianyuan Mathematics Foundation of China (No:10426012) and the Doctor's Foundation of Hebei Normal University (No:L2003B05).

of monotone maps on circles. In section 2, by estimating the cardinal of the spanning set and the separated set, we prove that the topological entropy of a sequence of equi-continuous monotone maps $f_{1,\infty} = \{f_i\}_{i=1}^{\infty}$

is $h(f_{1,\infty}) = \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=1}^{n} |\deg f_i|$. In section 3, as applications, we give the estimation of the entropies for some skew products on annular and torus. We also show that a C^1 diffeomorphism f on a smooth 2-dimensional closed manifold M and its extension $D^{\sharp}f$ on the unit tangent bundle SM have the same entropy, i.e., $h(f) = h(D^{\sharp}f)$.

Let (X,d) be a compact metric space and $\{f_i\}_{i=1}^{\infty}$ a sequence of continuous maps on X. The identity map on X will be denoted by Id. Let \mathbb{N} be the set of all positive integers. For any $i \in \mathbb{N}$, let $f_i^0 = Id$ and for any $i, n \in \mathbb{N}$, let

$$f_i^n = f_{i+(n-1)} \circ \cdots \circ f_{i+1} \circ f_i, \quad f_i^{-n} = (f_i^n)^{-1} = f_i^{-1} \circ f_{i+1}^{-1} \circ \cdots \circ f_{i+(n-1)}^{-1}.$$

 $(f^{-1} \text{ will be applied to sets, we don't assume that the maps } f_i \text{ are invertible})$. Denote by $f_{1,\infty}$ the sequence $\{f_i\}_{i=1}^{\infty}$ and the dynamical system $(X, \{f_i\}_{i=1}^{\infty})$. Finally, denote by $f_{1,\infty}^{[n]}$ the sequence of maps $\{f_i^{[n]} = f_{(i-1)n+1}^n\}_{i=1}^{\infty}$.

Let $\{f_i\}_{i=1}^{\infty}$ be a sequence of continuous maps of compact metric space (X,d). For any $n \in \mathbb{N}$, define a new metric d_n on X by

$$d_n(x,y) := \max_{0 \le i \le n-1} d(f_1^i(x), f_1^i(y)).$$

For any $\varepsilon > 0$, a subset $E \subset X$ is said to be an $(n, f_{1,\infty}, \varepsilon)$ spanning set of X, if for any $x \in X$, there exists $y \in E$ such that $d_n(x,y) \leq \varepsilon$. Let $r(n, f_{1,\infty}, \varepsilon)$ denote the smallest cardinality of any $(n, f_{1,\infty}, \varepsilon)$ -spanning set of X. A subset $F \subset X$ is said to be an $(n, f_{1,\infty}, \varepsilon)$ -separated set of X, if $x, y \in F, x \neq y$, implies $d_n(x,y) > \varepsilon$. Let $s(n, f_{1,\infty}, \varepsilon)$ denote the largest cardinality of any $(n, f_{1,\infty}, \varepsilon)$ -separated set of X. It's easy to prove that (similar to the proof for the autonomous system in [12])

$$r(n, f_{1,\infty}, \varepsilon) \leq s(n, f_{1,\infty}, \varepsilon) \leq r(n, f_{1,\infty}, \frac{\varepsilon}{2}).$$

DEFINITION 1.1. Let $f_{1,\infty} = \{f_i\}_{i=1}^{\infty}$ be a sequence of continuous maps of compact metric space (X,d), then the *topological entropy* of $f_{1,\infty}$ is defined by

$$h(f_{1,\infty}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log r(n, f_{1,\infty}, \varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s(n, f_{1,\infty}, \varepsilon).$$

Furthermore, we can see the equivalent definition using open covers in [7].

Let S^1 be a circle with the "geodesic" metric, in which S^1 has length 1 and the distance between two points is the length of the shortest path joining them. Let $f: S^1 \to S^1$ be a continuous surjective map and $F: \mathbf{R}^1 \to \mathbf{R}^1$ a lift of f, we say f is monotone if F is monotone. Denote by deg f the degree of f (see [13]).

2. The main result

The main result of this paper is:

THEOREM 2.1. Let $f_{1,\infty} = \{f_i\}_{i=1}^{\infty}$ be a sequence of equi-continuous monotone maps of S^1 . Then

$$h(f_{1,\infty}) = \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=1}^{n} |\deg f_i|.$$

We will prove this theorem using the idea in [6]. Let $f: S^1 \to S^1$ be a continuous monotone map, $|\deg f| = k$. Then for any $x \in S^1$, $f^{-1}(x)$ is a set consist of k points, denote $f^{-1}(x) = \{x_1, x_2, \ldots, x_n\}$. Let $\alpha_{f,1} = (x_1, x_2), \ldots, \alpha_{f,k-1} = (x_{k-1}, x_k), \alpha_{f,k} = (x_k, x_1)$. Then we get a finite partition $\xi_f = \{\alpha_{f,1}, \alpha_{f,2}, \ldots, \alpha_{f,k}\}$ of S^1 , where $f(\alpha_{f,i}) = S^1$ and $\alpha_{f,i} \cap \alpha_{f,j} = \emptyset$ for $1 \leq i \neq j \leq k$.

LEMMA 2.2. Let $f_{1,\infty} = \{f_i\}_{i=1}^{\infty}$ be a sequence of equi-continuous monotone maps of S^1 . Then there exists a constant a > 0, such that for every $f_i(i \ge 1)$ and any partition $\xi_{f_i} = \{\alpha_{f_i,1}, \alpha_{f_i,2}, \ldots, \alpha_{f_i,k_i}\}$ of S^1 defined as above, we have

diam
$$\alpha_{f_i,j} \geq a, \ 1 \leq j \leq k_i,$$

where $k_i = |\deg f_i|$.

Proof. Since $\{f_i\}_{i=1}^{\infty}$ is equi-continuous, then for $\varepsilon = \frac{1}{2}$, there exists a constant a > 0 such that

$$d(x,y) < a \Longrightarrow d(f_i(x), f_i(y)) < \varepsilon, \ \forall i \in \mathbb{N}, \ x, y \in S^1.$$

Note that for every $f_i(i \geq 1)$ and any partition $\xi_{f_i} = \{\alpha_{f_i,1}, \alpha_{f_i,2}, \ldots, \alpha_{f_i,k_i}\}$ of S^1 defined as above, $f_i(\overline{\alpha_{f_i,j}}) = S^1(1 \leq j \leq k_i)$ and diam $S^1 = 1$, we have diam $\alpha_{f_i,j} \geq a$, $1 \leq j \leq k_i$.

LEMMA 2.3. Let $f_{1,\infty} = \{f_i\}_{i=1}^{\infty}$ be a sequence of equi-continuous monotone maps of S^1 , $\{\xi_{f_i} = \{\alpha_{f_i,1}, \alpha_{f_i,2}, \dots, \alpha_{f_i,k_i}\}_{i=1}^{\infty}$ be any sequence of partitions of S^1 defined as above. Then for the new sequence of partitions of S^1

$$\left\{ \xi_{f_1^n} = \left\{ f_1^{-(n-1)}(\alpha_{f_n,j}) \mid \alpha_{f_n,j} \in \xi_{f_n}, \ 1 \le j \le k_n \right\} \right\}_{n=1}^{\infty},$$

we have

$$h(f_{1,\infty}) \le \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{card} \xi_{f_1^n} \le h(f_{1,\infty}) + \log 2.$$

Proof. For any $x \in S^1$, let $B_d(x, \varepsilon) = \{y \in S^1 \mid d(x, y) < \varepsilon\}$. By the definition of $\xi_{f_1^n}$, for any given $n \in \mathbb{N}$, there are n-1 new partitions of S^1 : $\xi'_{f_i} = \{\alpha'_{f_i,1}, \alpha'_{f_i,2}, \dots, \alpha'_{f_i,k_i}\}, 1 \leq i \leq n-1$, such that

$$\xi_{f_1^n} = \left\{ \bigcap_{i=1}^n f_1^{-(i-1)}(\alpha'_{f_i,j}) \mid \alpha'_{f_i,j} \in \xi'_{f_i}, \ 1 \le j \le k_i \right\}.$$

by Lemma 2.2, diam $\alpha'_{f_i,j} \geq a$ for any $1 \leq i \leq n-1$, $1 \leq j \leq k_i$.

Let $0 < \varepsilon < \frac{a}{2}$ (the meaning of a is in Lemma 2.2), and E be an $(n, f_{1,\infty}, \varepsilon)$ -spanning set of minimal cardinality of S^1 . It can be seen that for any $x \in E$ and $0 \le i \le n-1$, the ε -neighborhood $\overline{B_d(f_1^i(x), \varepsilon)}$ of $f_1^i(x)$ intersects at most 2 elements of ξ'_{f_i} . So $\overline{B_{d_n}(x, \varepsilon)}$ intersects at most 2^n elements of $\xi_{f_1^n}$. By the definition of spanning set, $\bigcup_{x \in E} \overline{B_{d_n}(x, \varepsilon)} = S^1$, then card $\xi_{f_1^n} \le 2^n$ card E. Therefore,

(1)
$$\limsup_{n \to \infty} \frac{1}{n} \log \operatorname{card} \xi_{f_1^n} \le h(f_{1,\infty}) + \log 2.$$

Now we take an arbitrary $0 < \varepsilon < \frac{1}{2}$ and choose an $(n, f_{1,\infty}, \varepsilon)$ -separated set F of maximal cardinality of S^1 . By the definition of separated set, for any $\alpha \in \xi_{f_1^n}$ and any two adjacent points x, y in $\alpha \cap F$, there exists j with $0 \le j \le n-1$ such that $d(f_1^j(x), f_1^j(y)) > \varepsilon$. Since f_1^j is monotone on α , then $f_1^j(x)$ and $f_1^j(y)$ are also two adjacent points. Hence, for each $0 \le j \le n-1$, there are at most $M = [\frac{1}{\varepsilon}] + 1$ pairs adjacent points which are more than ε apart in $f_1^j(\alpha \cap F)$. We claim that there are at most nM + 1 points in $\alpha \cap F$. In fact, if there are nM + 2 points in $\alpha \cap F$, then there are at least nM + 1 pairs adjacent points. As mentioned above, for any two adjacent points x, y in $\alpha \cap F$, there exists j with $0 \le j \le n-1$ such that $d(f_1^j(x), f_1^j(y)) > \varepsilon$. This implies that

there exists at least one $0 \le s \le n-1$ such that $d(f_1^s(x), f_1^s(y)) > \varepsilon$ for at least M+1 pairs adjacent points. This contradicts with the definition of M.

In such a way, we have $\operatorname{card}(\alpha \cap F) \leq nM + 1$. Hence, $\operatorname{card} F \leq (nM + 1) \operatorname{card} \xi_{f_1^n}$. Furthermore, we have

$$\frac{1}{n}\log s(n, f_{1,\infty}, \varepsilon) \leq \frac{1}{n}\log \operatorname{card} \xi_{f_1^n} + \frac{1}{n}\log(nM+1).$$

Letting $n \to \infty$, we have

$$\limsup_{n \to \infty} \frac{1}{n} \log s(n, f_{1,\infty}, \varepsilon) \le \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{card} \xi_{f_1^n}.$$

Taking limits as ε goes to 0 establish the following inequality:

(2)
$$h(f_{1,\infty}) \le \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{card} \xi_{f_1^n}.$$

Then (1) and (2) yields

$$h(f_{1,\infty}) \le \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{card} \xi_{f_1^n} \le h(f_{1,\infty}) + \log 2.$$

Let $f_{1,\infty}=\{f_i\}_{i=1}^{\infty}$ be a sequence of equi-continuous monotone maps of S^1 . It is easy to see that for any $m\in \mathbb{N}$, the sequence $f_{1,\infty}^{[m]}$ still be a sequence of equi-continuous monotone maps of S^1 . For simplification, we denote $g_{1,\infty}=f_{1,\infty}^{[m]}$, i.e., $g_{1,\infty}=\{g_i\}_{i=1}^{\infty}$, where $g_i=f_i^{[m]}$, $i\in \mathbb{N}$. Accordingly, we can construct a new sequence of finite partitions of S^1 $\{\xi_{g_1^n}\}_{n=1}^{\infty}$ from the sequence of finite partitions of S^1 $\{\xi_{f_i}\}_{i=1}^{\infty}$, where $\xi_{g_1^n}=\xi_{f_1^{nm}},\ n\in \mathbb{N}$.

LEMMA 2.4. Let m be any given positive integer. Then for the sequence of maps $g_{1,\infty}$ defined as above and the relevant sequence of partition $\{\xi_{g_1^n}\}_{n=1}^{\infty}$, we have

$$\limsup_{n\to\infty}\frac{1}{n}\log\operatorname{card}\,\xi_{g_1^n}=m\limsup_{n\to\infty}\frac{1}{n}\log\operatorname{card}\,\xi_{f_1^n}.$$

Proof. By Lemma 2.2, for any $i \in \mathbb{N}$, card $\xi_{f_i} \leq N := \left[\frac{1}{a}\right] + 1$. Then, for any positive integer n = lm + j, $0 \leq j \leq m - 1$, we have

$$\operatorname{card} \xi_{f_1^{lm}} \leq \operatorname{card} \xi_{f_1^n} \leq N^m \operatorname{card} \xi_{f_1^{lm}}.$$

378

So

$$\begin{split} \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{card} \, \xi_{f_1^n} &= \, \limsup_{l \to \infty} \frac{1}{lm} \log \operatorname{card} \, \xi_{f_1^{lm}} \\ &= \frac{1}{m} \limsup_{l \to \infty} \frac{1}{l} \log \operatorname{card} \, \xi_{g_1^l}. \end{split}$$

Therefore,

$$\limsup_{n\to\infty}\frac{1}{n}\log\operatorname{card}\,\xi_{g_1^n}=m\limsup_{n\to\infty}\frac{1}{n}\log\operatorname{card}\,\xi_{f_1^n}.$$

LEMMA 2.5. ([7]). If $f_{1,\infty} = \{f_i\}_{i=1}^{\infty}$ is a sequence of equi-continuous maps on a compact metric space, then for any $m \in \mathbb{N}$, we have

$$h(f_{1,\infty}^{[m]}) = m \cdot h(f_{1,\infty}).$$

Proof of Theorem 2.1. For any $\varepsilon > 0$, take $m \in \mathbb{N}$ such that $\frac{\log 2}{m} < \varepsilon$. Since $f_{1,\infty}$ is a sequence of monotone equi-continuous maps on S^1 , as mentioned above, it is easy to see that $g_{1,\infty} = f_{1,\infty}^{[m]}$ is also a sequence of equi-continuous monotone maps on S^1 . By Lemma 2.3, we get

$$h(f_{1,\infty}^{[m]}) \leq \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{card} \xi_{g_1^n} \leq h(f_{1,\infty}^{[m]}) + \log 2.$$

Using Lemmas 2.4 and 2.5, and notice the way m is taken, we get

$$h(f_{1,\infty}) \le \limsup_{n \to \infty} \frac{1}{n} \log \operatorname{card} \xi_{f_1^n} \le h(f_{1,\infty}) + \varepsilon.$$

Since ε is arbitrary, noting that card $\xi_{f_1^n} = \prod_{i=1}^n |\deg f_i|$, we get immediately

$$h(f_{1,\infty}) = \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=1}^{n} |\deg f_i|.$$

COROLLARY 2.6. If $f_{1,\infty} = \{f_i\}_{i=1}^{\infty}$ is a sequence of equi-continuous monotone maps of S^1 , and the absolute values of the degrees of the mappings are the same, denote it by k, then $h(f_{1,\infty}) = \log k$.

In particular, (Theorem in [5]) If $f: S^1 \to S^1$ is a continuous monotone map, then $h(f) = \log |\deg f|$.

П

COROLLARY 2.7. If every element of the sequence $\{f_i\}_{i=1}^{\infty}$ on S^1 is chosen from a set consisted of finite continuous monotone maps, then

$$h(f_{1,\infty}) = \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=1}^{n} |\deg f_i|.$$

Proof. It is only to note that the continuous map on compact space is uniformly continuous, and finite uniformly continuous maps are equicontinuous. \Box

COROLLARY 2.8. Let f be an expansive map of S^1 , i.e., f be of C^1 , and for every lift $F: R^1 \to R^1$ of it, |F'(x)| > 1, $\forall x \in \mathbf{R}$. If $\{f_i\}_{i=1}^{\infty}$ are generated by sufficiently small C^1 -perturbation of f, then $h(f_{1,\infty}) = \log |\deg f|$.

Proof. Note that the expansive map of S^1 is strictly monotone and structurally stable ([13]). Also note the degree of the mapping is an invariant of topological conjugacy. Therefore, if every element of $\{f_i\}_{i=1}^{\infty}$ is chosen from the sufficiently small C^1 -neighborhood of f, then $\{f_i\}_{i=1}^{\infty}$ must be a sequence of equi-continuous monotone mappings, and deg $f_i = \deg f$, $\forall i \in \mathbb{N}$. From Lemma 2.6, we have $h(f_{1,\infty}) = \log |\deg f|$.

3. Applications

PROPOSITION 3.1. ([2]). Let X, Y be compact metric spaces, $F: X \to X$, $f: Y \to Y$ be continuous maps, $\pi: X \to Y$ be a surjective continuous map, and satisfy $\pi \circ F = f \circ \pi$, that is, f and F are topological semi-conjugate and f is the factor of F. Then

$$h(f) \leq h(F) \leq h(f) + \sup_{y \in Y} h(F, \pi^{-1}(y)).$$

Let X, Y be compact metric spaces. A continuous map $F: X \times Y \to X \times Y$ is called a *skew-product*, if there exist a continuous map f of X and a set of continuous maps $\{g_x \mid x \in X\}$ of Y which depend on x continuously, such that $F(x,y) = (f(x),g_x(y)), \forall x \in X, y \in Y$. By Proposition 3.1, we can get that: for the skew-product $F: X \times Y \to X \times Y$, we have

$$h(f) \le h(F) \le h(f) + \sup_{x \in X} h(F, \pi^{-1}(x)),$$

where $\pi: X \times Y \to X$, $(x,y) \mapsto x$ is the natural projection.

PROPOSITION 3.2. ([10]). If f is a piecewise monotone continuous self-map of I, then

$$h(f) = \lim_{n \to \infty} \frac{1}{n} \log C_n,$$

where C_n denotes the number of pieces of monotonicity of f^n .

COROLLARY 3.3. (1) Let $F(x,y) = (f(x), g_x(y))$ be a skew product of annular $I \times S^1$. If f is piecewise monotone, $\{g_x \mid x \in I\}$ is a sequence of equi-continuous monotone maps, then

$$\lim_{n \to \infty} \frac{1}{n} \log C_n \le h(F)$$

$$\le \lim_{n \to \infty} \frac{1}{n} \log C_n + \sup_{x \in I} \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=0}^{n-1} |\deg g_{f^i(x)}|.$$

(2) Let $F(x,y) = (f(x), g_x(y))$ be a skew product of torus $S^1 \times S^1$. If $\{f\} \cup \{g_x \mid x \in S^1\}$ is a sequence of equi-continuous monotone maps, then

$$\log|\deg f| \le h(F) \le \log|\deg f| + \sup_{x \in S^1} \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=0}^{n-1} |\deg g_{f^i(x)}|.$$

Proof. Firstly, note that for any skew product $F: X \times Y \to X \times Y$, and any $x \in X$, we have

$$h(F,\pi^{-1}(x)) = h(\{g_{f^{i-1}(x)}\}_{i=1}^{\infty}).$$

From Propositions 3.1, 3.2 and Theorem 2.1, we can get (1). From Proposition 3.1, Corollary 2.6 and Theorem 2.1, we can get (2). \Box

Let (M,ρ) be a smooth 2-dimensional closed manifold (i.e., M is compact and without boundary), TM be the tangent bundle of M. We denote $|\cdot|$, $||\cdot||$ and $d(\cdot,\cdot)$, respectively, the norm on TM, the operator norm and the metric on M induced by the Riemannian metric. Denote by $SM = \bigcup_{x \in M} S_x M$ the unit tangent bundle of M, where $S_x M = \{u \in T_x M \mid |u| = 1\}$. Note that SM is a compact metric space and its metric d can be derived from ρ . That is, the restriction of d on $S_x M$ is consistent with the restriction of the metric of $T_x M$, which derived from

the inner product ρ_x , on S_xM . Let $f: M \to M$ be a C^1 diffeomorphism, $Df: TM \to TM$ be the tangent map of f. Let $D^{\sharp}f: SM \to SM$, $u \mapsto \frac{Df(x)u}{|Df(x)u|}$, $u \in T_xM$. Then $(SM, D^{\sharp}f)$ is a compact topological system, we also call it the *extension* of f on the unit tangent bundle. One can see [8] for some connections of the dynamics between f and its extension $D^{\sharp}f$.

PROPOSITION 3.4. Let $f:M\to M$ be a C^1 diffeomorphism on a smooth two-dimensional closed Riemannian manifold M, and $D^\sharp f$ be its extension on the unit tangent bundle SM. Then

$$h(f) = h(D^{\sharp}f).$$

Proof. Let $\pi: SM \to M$, $u \mapsto x$, $u \in S_xM$ be the natural projection. It is easy to verify that $\pi \circ D^{\sharp} f = f \circ \pi$. By Proposition 3.1, we have

(3)
$$h(f) \le h(D^{\sharp}f) \le h(f) + \sup_{x \in M} h(D^{\sharp}f, \pi^{-1}(x)).$$

Since M is compact, f is a C^1 diffeomorphism, then we can take

$$M = \max_{x \in M} \|Df(x)\|, \ \ m = \min_{x \in M} \|Df(x)\|.$$

For any $x \in M$, $u, v \in S_xM$, we have

$$d(D^{\sharp}f(x)u, D^{\sharp}f(x)v)$$

$$= \left|D^{\sharp}f(x)u - D^{\sharp}f(x)v\right|$$

$$= \left|\frac{Df(x)u}{|Df(x)u|} - \frac{Df(x)v}{|Df(x)v|}\right|$$

$$= \frac{1}{|Df(x)u| \cdot |Df(x)v|} ||Df(x)v| \cdot Df(x)u - |Df(x)u| \cdot Df(x)v|$$

$$\leq \frac{1}{m^{2}} ||Df(x)v| \cdot |Df(x)(u-v)| - ||Df(x)u| - |Df(x)v|| \cdot Df(x)v|$$

$$\leq \frac{1}{m^{2}} ||M^{2}(u-v) + M|Df(x)(u-v)||$$

$$\leq \frac{2M^{2}}{m^{2}} |u-v|.$$

This shows that $\{D^{\sharp}f(x)\mid x\in M\}$ are equi-continuous with respect to d.

Since $D^{\sharp}f(x): S_xM \to S_{f(x)}M$ is a homeomorphism, then it is monotone and $|\deg D^{\sharp}f(x)|=1$. Hence, from Theorem 2.1 and Corollary 2.6, we have $h(D^{\sharp}f,\pi^{-1}(x))=0$ for any $x\in M$. Therefore, from (3) we have

$$h(f) = h(D^{\sharp}f).$$

References

- R. Adler, A. Konheim, and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319.
- [2] R. Bowen, Entropy for group endomorphisms and homogenuous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414.
- [3] E. I. Dinaburg, A connection between various entropy characterizations of dynamical systems (Russian), Izv. Akad. Nauk. SSSR. Ser. Mat. 35 (1971), 324-366.
- [4] D. Fiebig, U. Fiebig, and Z. Nitecki, Entropy and preimage sets, Ergodic Theory Dynam. Systems 23 (2003), no. 6, 1785–1806.
- [5] F. -H. Lian and Z. -H. Wang, Topological entropy of monotone map on circle, J. Math. Resear. Expo. 16 (1996), no. 3, 379–382.
- [6] S. Kolyada, M. Misiurewicz, and L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on interval. Fund. Math. 160 (1999), 161– 181.
- [7] S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-223.
- [8] S. -T. Liao, Qualitative theory of differentiable dynamical systems, The Science Press of China, Beijing, 1992.
- [9] M. Misiurewicz, On Bowen's definition of topological entropy, Discrete Contin. Dyn. Syst. 10 (2004), no. 3, 827-833.
- [10] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studa Math. 67 (1980), no. 1, 45-63.
- [11] Z. Nitecki and F. Przytycki, Preimage entropy for mappings, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1815–1843.
- [12] P. Walters, An introduction to ergodic theory, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
- [13] Z.-S. Zhang, The principle of differentiable dynamical systems, The Science Press of China, Beijing, 1987.

College of Mathematics and Information Science Hebei Normal University Shijiazhuang, 050016, P. R. China E-mail: vjzhu@heinfo.net