• Title/Summary/Keyword: molecular processes

Search Result 1,225, Processing Time 0.023 seconds

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.

Molecular Action of Prostaglandin to Mediate Insect Immunity and Its Application to Develop Novel Insect Control Techniques (곤충 면역반응을 중개하는 프로스타글란딘의 분자적 기작과 해충방제 응용)

  • Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.173-195
    • /
    • 2022
  • Like vertebrates, insects synthesize various eicosanoids after the committed catalytic step of phospholipase A2 (PLA2). However, the subsequent biosynthetic steps exhibit some deviation from those of vertebrates. Due to little composition of arachidonic acid in insect phospholipids, PLA2 releases linoleic acid, which is another polyunsaturated fatty acid and relatively rich in insect phospholipids, to synthesize arachidonic acid via chain extension and desaturation. Resulting arachidonic acid is then oxygenated into a prostaglandin (PG), PGH2, by a specific peroxidase called peroxynectin, but not by cyclooxygenase. PGH2 is then isomerized to various PGs such as PGA2, PGD2, PGE2, PGI2, and a thromboxane (TXB2). All four epoxyeicosatrienoic acids such as 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET are also synthesized from arachidonic acid by oxygenation of vertebrate types of monooxygenases. However, the other type of eicosanoids called leukotrienes are found in insect tissues but their synthetic pathway is unclear. Eicosanoids mediate various insect physiological processes such as metabolism, excretion, immunity, and reproduction. Thus, identification of novel compounds interrupting eicosanoid biosynthesis would be a novel approach to develop insecticides. This review focuses on PGs and their immune mediation.

Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds

  • Nikitkina, Elena V.;Dementieva, Natalia V.;Shcherbakov, Yuri S.;Atroshchenko, Mikhail M.;Kudinov, Andrei A.;Samoylov, Oleg I.;Pozovnikova, Marina V.;Dysin, Artem P.;Krutikova, Anna A.;Musidray, Artem A.;Mitrofanova, Olga V.;Plemyashov, Kirill V.;Griffin, Darren K.;Romanov, Michael N.
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1827-1838
    • /
    • 2022
  • Objective: The semen quality of stallions including sperm motility is an important target of selection as it has a high level of individual variability. However, effects of the molecular architecture of the genome on the mechanisms of sperm formation and their preservation after thawing have been poorly investigated. Here, we conducted a genome-wide association study (GWAS) for the sperm motility of cryopreserved semen in stallions of various breeds. Methods: Semen samples were collected from the stallions of 23 horse breeds. The following semen characteristics were examined: progressive motility (PM), progressive motility after freezing (FPM), and the difference between PM and FPM. The respective DNA samples from these stallions were genotyped using Axiom Equine Genotyping Array. Results: We performed a GWAS search for single nucleotide polymorphism (SNP) markers and potential genes related to motility properties of frozen-thawed semen in the stallions of various breeds. As a result of the GWAS analysis, two SNP markers, rs1141327473 and rs1149048772, were identified that were associated with preservation of the frozen-thawed stallion sperm motility, the relevant putative candidate genes being NME/NM23 family member 8 (NME8), olfactory receptor family 2 subfamily AP member 1 (OR2AP1), and olfactory receptor family 6 subfamily C member 4 (OR6C4). Potential implications of effects of these genes on sperm motility are herein discussed. Conclusion: The GWAS results enabled us to localize novel SNPs and candidate genes for sperm motility in stallions. Implications of the study for horse breeding and genetics are a better understanding of genomic regions and candidate genes underlying stallion sperm quality, and improvement in horse reproduction and breeding techniques. The identified markers and genes for sperm cryotolerance and the respective genomic regions are promising candidates for further studying the biological processes in the formation and function of the stallion reproductive system.

Growth Characteristics and Comparative Proteome Analysis of Adzuki Bean Leaves at the Early Vegetative Stage under Waterlogging Stress (논 토양 조건에서 팥 유묘기의 생육특성과 단백질 발현 양상)

  • Hae-Ryong Jeong;Soo-Jeong Kwon;Sung-Hyun Yun;Min-Young Park;Hee-Ock Boo;Hag-Hyun Kim;Moon-Soon Lee;Sun-Hee Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.211-221
    • /
    • 2022
  • Recently, the demand for the cultivation of upland soil has been increasing, and the rate of conversion of paddy soil into upland soil is also increasing. Theincrease in uneven precipitation due to climate change has resulted in dramatic effects of waterlogging stress on upland crops. Therefore, the present study was conducted to investigate the changes in growth characteristics and the expression patterns of proteins at the two-leaf stage of adzuki beans. The domestic cultivar, Arari (Miryang No. 8), was used to test waterlogging stress. At the two-leaf stage of adzuki beans, plant height slightly decreased androot fresh weight showed significant changes after 3 days of waterlogging treatment. Chlorophyll content was also significantly different after 3 days of waterlogging treatment compared to its content in control plants. Using two-dimensional gel electrophoresis, more than 400 protein spots were identified. Twenty-one differentially expressed proteins from the two-leaf stage were analyzed using linear trap quadrupole-Fourier transform-ion cyclotron resonance mass spectrometry. Of these 21 proteins, 9 were up-regulated and 12 were down-regulated under waterlogging treatment. Protein information resource (https://pir.georgetown.edu/) categories were assigned to all 49 proteins according to their molecular function, cellular component localization, and biological processes. Most of the proteins were found to be involved in the biological process, carbohydrate metabolism and were localized in chloroplasts.

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung Kang;Young Hoon Kwon;Jung Yoon Jang;Jun Ho Lee;Sanggwon Lee;Yujin Park;Hyung Ryong Moon;Hae Young Chung;Nam Deuk Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

Hizikia Fusiformis Hexane Extract Decreases Angiogenesis in Vitro and in Vivo (Hizikia fusiformis 추출물의 in vitro 및 in vivo에서 혈관신생 감소 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Yung Park;Ji-hyeok Lee;Eui-Yun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.703-712
    • /
    • 2023
  • Angiogenesis, the formation of blood vessels from pre-existing vessels, is a multistep process regulated by modulators of angiogenesis. It is essential for various physiological processes, such as embryonic development, chronic inflammation, and wound repair. Dysregulation of angiogenesis causes many diseases, such as cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. However, the number of effective anti-angiogenic drugs is limited. Recent research has focused on identifying potential drug candidates from natural sources. For example, marine natural products have been shown to have anti-cancer, anti-oxidant, anti-inflammatory, antiviral, and wound-healing effects. Thus, this study aimed to describe the angiogenesis inhibitory effect of Hizikia fusiforms (brown algae) extract. The hexane extract of H. fusiformis has shown inhibitory effects on in vitro angiogenesis assays, such as cell migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVECs). The hexane extract of H. fusiformis (HFH) inhibited in vivo angiogenesis in a mouse Matrigel gel plug assay. In addition, the protein expression of vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal kinase, and AKT serine/threonine kinase 1 decreased following treatment with H. fusiformis extracts. Our results demonstrated that the hexane extract of H. fusiformis (HFH) inhibits angiogenesis in vitro and in vivo.

Development and Biogenesis of Peroxisome in Oil-seed Plants (지방 저장 식물의 퍼옥시좀 생성과 발달)

  • Dae-Jae Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.651-662
    • /
    • 2023
  • Peroxisomes, known as microbodies, are a class of morphologically similar subcellular organelles commonly found in most eukaryotic cells. They are 0.2~1.8 ㎛ in diameter and are bound by a single membrane. The matrix is usually finely granular, but occasionally crystalline or fibrillary inclusions are observed. They characteristically contain hydrogen peroxide (H2O2) generating oxidases and contain the enzyme catalase, thus confining the metabolism of the poisonous H2O2 within these organelles. Therefore, the eukaryotic organelles are greatly dynamic both in morphology and metabolism. Plant peroxisomes, in particular, are associated with numerous metabolic processes, including β-oxidation, the glyoxylate cycle and photorespiration. Furthermore, plant peroxisomes are involved in development, along with responses to stresses such as the synthesis of important phytohormones of auxins, salicylic acid and jasmonic acids. In the past few decades substantial progress has been made in the study of peroxisome biogenesis in eukaryotic organisms, mainly in animals and yeasts. Advancement of sophisticated techniques in molecular biology and widening of the range of genomic applications have led to the identification of most peroxisomal genes and proteins (peroxins, PEXs). Furthermore, recent applications of proteome study have produced fundamental information on biogenesis in plant peroxisomes, together with improving our understanding of peroxisomal protein targeting, regulation, and degradation. Nonetheless, despite this progress in peroxisome development, much remains to be explained about how peroxisomes originate from the endoplasmic reticulum (ER), then assemble and divide. Peroxisomes perform dynamic roles in many phases of plant development, and in this review, we focus on the latest progress in furthering our understanding of plant peroxisome functions, biogenesis, and dynamics.

Comparative analysis of liver transcriptome reveals adaptive responses to hypoxia environmental condition in Tibetan chicken

  • Yongqing Cao;Tao Zeng;Wei Han;Xueying Ma;Tiantian Gu;Li Chen;Yong Tian;Wenwu Xu;Jianmei Yin;Guohui Li;Lizhi Lu;Shuangbao Gun
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.28-38
    • /
    • 2024
  • Objective: Tibetan chickens, which have unique adaptations to extreme high-altitude environments, exhibit phenotypic and physiological characteristics that are distinct from those of lowland chickens. However, the mechanisms underlying hypoxic adaptation in the liver of chickens remain unknown. Methods: RNA-sequencing (RNA-Seq) technology was used to assess the differentially expressed genes (DEGs) involved in hypoxia adaptation in highland chickens (native Tibetan chicken [HT]) and lowland chickens (Langshan chicken [LS], Beijing You chicken [BJ], Qingyuan Partridge chicken [QY], and Chahua chicken [CH]). Results: A total of 352 co-DEGs were specifically screened between HT and four native lowland chicken breeds. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses indicated that these co-DEGs were widely involved in lipid metabolism processes, such as the peroxisome proliferator-activated receptors (PPAR) signaling pathway, fatty acid degradation, fatty acid metabolism and fatty acid biosynthesis. To further determine the relationship from the 352 co-DEGs, protein-protein interaction network was carried out and identified eight genes (ACSL1, CPT1A, ACOX1, PPARC1A, SCD, ACSBG2, ACACA, and FASN) as the potential regulating genes that are responsible for the altitude difference between the HT and other four lowland chicken breeds. Conclusion: This study provides novel insights into the molecular mechanisms regulating hypoxia adaptation via lipid metabolism in Tibetan chickens and other highland animals.

Ginseng-derived type I rhamnogalacturonan polysaccharide binds to galectin-8 and antagonizes its function

  • Yi Zheng;Yunlong Si;Xuejiao Xu;Hongming Gu;Zhen He;Zihan Zhao;Zhangkai Feng;Jiyong Su;Kevin H. Mayo;Yifa Zhou;Guihua Tai
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.202-210
    • /
    • 2024
  • Background: Panax ginseng Meyer polysaccharides exhibit various biological functions, like antagonizing galectin-3-mediated cell adhesion and migration. Galectin-8 (Gal-8), with its linker-joined N- and C-terminal carbohydrate recognition domains (CRDs), is also crucial to these biological processes, and thus plays a role in various pathological disorders. Yet the effect of ginseng-derived polysaccharides in modulating Gal-8 function has remained unclear. Methods: P. ginseng-derived pectin was chromatographically isolated and enzymatically digested to obtain a series of polysaccharides. Biolayer Interferometry (BLI) quantified their binding affinity to Gal-8, and their inhibitory effects on Gal-8 was assessed by hemagglutination, cell migration and T-cell apoptosis. Results: Our ginseng-derived pectin polysaccharides consist mostly of rhamnogalacturonan-I (RG-I) and homogalacturonan (HG). BLI shows that Gal-8 binding rests primarily in RG-I and its β-1,4-galactan side chains, with sub-micromolar KD values. Both N- and C-terminal Gal-8 CRDs bind RG-I, with binding correlated with Gal-8-mediated function. Conclusion: P. ginseng RG-I pectin β-1,4-galactan side chains are crucial to binding Gal-8 and antagonizing its function. This study enhances our understanding of galectin-sugar interactions, information that may be used in the development of pharmaceutical agents targeting Gal-8.

The anti-cancer effect of pomegranate-derived nanovesicles on MDA-MB-231 breast cancer cells (MDA-MB-231 유방암 세포에서 석류 유래 나노베지클의 항암효과)

  • Dong-ha Kim;Ji-Su Kim;In-Sook Kwun;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.57 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Purpose: Cancer is the leading cause of death in Koreans, with breast cancer being the most common among women. Breast cancer readily metastasizes, and the existing treatment processes impose a significant burden on patients. This study examined whether pomegranate-derived exosome-like nanovesicles (PNVs) have anti-cancer effects by inhibiting cell infiltration and metastasis while increasing apoptosis on breast cancer MDA-MB-231 cells. Methods: Initially, exosome-like nanovesicles were isolated from pomegranate using ultracentrifugation. Subsequently, the size range of these nanovesicles was confirmed using nanoparticle tracking analysis. The ability of breast cancer MDA-MB-231 cells to internalize these natural nanovesicles was assessed with flourescence microscope. The anti-cancer effects of the PNVs were confirmed by applying various concentrations of PNVs (10, 50, 100 ㎍/mL) to MDA-MB-231 cells and systematically assessing their impact on cell viability and migration. Results: The round shape of the lipid bilayer in the PNVs was confirmed, providing crucial insights into their structural properties. We demonstrate that PNVs-associated DiD dye can be efficiently internalized by the MDA-MB-231 cells. The data showed that the PNVs inhibited cell viability, invasion rates, and migration in MDA-MB-231 cells. In addition, PNVs were absorbed into the MDA-MB-231 cells, leading to an increased expression of apoptosis proteins, such as cleaved caspase-3 and phosphorus-JNK, in a concentration-dependent manner. Furthermore, a reduction in cell infiltration and decreased expression of the transition markers MMP-2 and MMP-9 proteins were observed. Conclusion: For the first time, this study suggests that PNVs may be useful in the prevention or treatment of breast cancer by inhibiting the infiltration and metastasis of MDA-MB-231 cells and inducing apoptosis.