DOI QR코드

DOI QR Code

Comparative analysis of liver transcriptome reveals adaptive responses to hypoxia environmental condition in Tibetan chicken

  • Yongqing Cao (College of Animal Science and Technology, Gansu Agricultural University) ;
  • Tao Zeng (State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Wei Han (Jiangsu Institute of Poultry Science) ;
  • Xueying Ma (Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy Agricultural and Animal Husbandry Sciences) ;
  • Tiantian Gu (State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Li Chen (State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Yong Tian (State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Wenwu Xu (State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Jianmei Yin (Jiangsu Institute of Poultry Science) ;
  • Guohui Li (Jiangsu Institute of Poultry Science) ;
  • Lizhi Lu (State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science) ;
  • Shuangbao Gun (College of Animal Science and Technology, Gansu Agricultural University)
  • Received : 2023.04.05
  • Accepted : 2023.07.11
  • Published : 2024.01.01

Abstract

Objective: Tibetan chickens, which have unique adaptations to extreme high-altitude environments, exhibit phenotypic and physiological characteristics that are distinct from those of lowland chickens. However, the mechanisms underlying hypoxic adaptation in the liver of chickens remain unknown. Methods: RNA-sequencing (RNA-Seq) technology was used to assess the differentially expressed genes (DEGs) involved in hypoxia adaptation in highland chickens (native Tibetan chicken [HT]) and lowland chickens (Langshan chicken [LS], Beijing You chicken [BJ], Qingyuan Partridge chicken [QY], and Chahua chicken [CH]). Results: A total of 352 co-DEGs were specifically screened between HT and four native lowland chicken breeds. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses indicated that these co-DEGs were widely involved in lipid metabolism processes, such as the peroxisome proliferator-activated receptors (PPAR) signaling pathway, fatty acid degradation, fatty acid metabolism and fatty acid biosynthesis. To further determine the relationship from the 352 co-DEGs, protein-protein interaction network was carried out and identified eight genes (ACSL1, CPT1A, ACOX1, PPARC1A, SCD, ACSBG2, ACACA, and FASN) as the potential regulating genes that are responsible for the altitude difference between the HT and other four lowland chicken breeds. Conclusion: This study provides novel insights into the molecular mechanisms regulating hypoxia adaptation via lipid metabolism in Tibetan chickens and other highland animals.

Keywords

Acknowledgement

This research was funded by the National Key Research and Development Program of China (2021YFD1200302), Project of Key Research and Development Plan (Modern Agriculture) of Jiangsu Province (BE2019353), "JBGS" Project of Seed Industry Revitalization in Jiangsu Province (JBGS [2021] 029), and the Key Research and Development Program of Zhejiang Province (2021C02034).

References

  1. Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA. 2007;104(Suppl 1):8655-60. https://doi.org/10.1073/pnas.0701985104
  2. Yang Y, Gao C, Yang T, et al. Characteristics of Tibetan pig lung tissue in response to a hypoxic environment on the Qinghai-Tibet Plateau. Arch Anim Breed 2021;64:283-92. https://doi.org/10.5194/aab-64-283-2021
  3. Ivy CM, Scott GR. Life-long exposure to hypoxia affects metabolism and respiratory physiology across life stages in high-altitude deer mice (Peromyscus maniculatus). J Exp Biol 2021;224:jeb237024. https://doi.org/10.1242/jeb.237024
  4. Nabi G, Xing D, Sun Y, et al. Coping with extremes: High-altitude sparrows enhance metabolic and thermogenic capacities in the pectoralis muscle and suppress in the liver relative to their lowland counterparts. Gen Comp Endocrinol 2021;313:113890. https://doi.org/10.1016/j.ygcen.2021.113890
  5. Qi X, Zhang Q, He Y, et al. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biol Evol 2019;11:72-85. https://doi.org/10.1093/gbe/evy264
  6. Jain IH, Calvo SE, Markhard AL, et al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 2020;181:716-27.e11. https://doi.org/10.1016/j.cell.2020.03.029
  7. Murray AJ, Montgomery HE, Feelisch M, Grocott MPW, Martin DS. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochem Soc Trans 2018;46:599-607. https://doi.org/10.1042/BST20170502
  8. Ivy CM, Scott GR. Control of breathing and the circulation in high-altitude mammals and birds. Comp Biochem Physiol A Mol Integr Physiol 2015;186:66-74. https://doi.org/10.1016/j.cbpa.2014.10.009
  9. McClelland GB, Scott GR. Evolved mechanisms of aerobic performance and hypoxia resistance in high-altitude natives. Annu Rev Physiol 2019;81:561-83. https://doi.org/10.1146/annurev-physiol-021317-121527
  10. Storz JF, Scott GR. Life ascending: mechanism and process in physiological adaptation to high-altitude hypoxia. Annu Rev Ecol Evol Syst 2019;50:503-26. https://doi.org/10.1146/annurev-ecolsys-110218-025014
  11. Bao H, Zhao C, Li J, Wu C. Sequencing and alignment of mitochondrial genomes of Tibetan chicken and two lowland chicken breeds. Sci China Ser C Life Sci 2008;51:47-51. https://doi.org/10.1007/s11427-008-0005-0
  12. Zhang H, Wang XT, Chamba Y, Ling Y, Wu CX. Influences of hypoxia on hatching performance in chickens with different genetic adaptation to high altitude. Poult Sci 2008;87:2112-6. https://doi.org/10.3382/ps.2008-00122
  13. Zhang Y, Gou W, Zhang Y, Zhang H, Wu C. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics. Comp Biochem Physiol Part D Genomics Proteomics 2019;31:100602. https://doi.org/10.1016/j.cbd.2019.100602
  14. Zhang Y, Zheng X, Zhang Y, Zhang H, Zhang X, Zhang H. Comparative transcriptomic and proteomic analyses provide insights into functional genes for hypoxic adaptation in embryos of Tibetan chickens. Sci Rep 2020;10:11213. https://doi.org/10.1038/s41598-020-68178-w
  15. Kim SY, Yang EG. Recent advances in developing inhibitors for hypoxia-inducible factor prolyl hydroxylases and their therapeutic implications. Molecules 2015;20:20551-68. https://doi.org/10.3390/molecules201119717
  16. Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 2014;9:47-71. https://doi.org/10.1146/annurev-pathol-012513-104720
  17. Chen C, Lou T. Hypoxia inducible factors in hepatocellular carcinoma. Oncotarget 2017;8:46691-703. https://doi.org/10.18632/oncotarget.17358
  18. Zhao X, Wu N, Zhu Q, Gaur U, Gu T, Li D. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective. Mitochondrial DNA A DNA Mapp Seq Anal 2016;27:3280-8. https://doi.org/10.3109/19401736.2015.1015006
  19. Zhang Z, Du H, Bai L, et al. Whole genome bisulfite sequencing reveals unique adaptations to high-altitude environments in Tibetan chickens. PLoS One 2018;13:e0193597. https://doi.org/10.1371/journal.pone.0193597
  20. Zhang Y, Gou W, Ma J, Zhang H, Zhang Y, Zhang H. Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos. Peer J 2017;5:e3891. https://doi.org/10.7717/peerj.3891
  21. Sharma P, Bansal A, Sharma PC. RNA-seq-based transcriptome profiling reveals differential gene expression in the lungs of Sprague-Dawley rats during early-phase acute hypobaric hypoxia. Mol Genet Genomics 2015;290:2225-40. https://doi.org/10.1007/s00438-015-1064-0
  22. Li H, Wang T, Xu C, et al. Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in laying hens. BMC Genomics 2015;16:763. https://doi.org/10.1186/s12864-015-1943-0
  23. Holden JE, Stone CK, Clark CM, et al. Enhanced cardiac metabolism of plasma glucose in high-altitude natives: adaptation against chronic hypoxia. J Appl Physiol 1995;79:222-8. https://doi.org/10.1152/jappl.1995.79.1.222
  24. Andus T, Bauer J, Gerok W. Effects of cytokines on the liver. Hepatology 1991;13:364-75. https://doi.org/10.1002/hep.1840130226
  25. Suzuki T, Shinjo S, Arai T, Kanai M, Goda N. Hypoxia and fatty liver. World J Gastroenterol 2014;20:15087-97. https://doi.org/10.3748/wjg.v20.i41.15087
  26. Lankford HV, Swenson ER. Dilated hearts at high altitude: words from on high. High Alt Med Biol 2014;15:511-9. https://doi.org/10.1089/ham.2014.1047
  27. Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation 2007;115:1132-46. https://doi.org/10.1161/CIRCULATIONAHA.106.624544
  28. Zhang B, Chamba Y, Shang P, et al. Comparative transcriptomic and proteomic analyses provide insights into the key genes involved in high-altitude adaptation in the Tibetan pig. Sci Rep 2017;7:3654. https://doi.org/10.1038/s41598-017-03976-3
  29. Kennedy SL, Stanley WC, Panchal AR, Mazzeo RS. Alterations in enzymes involved in fat metabolism after acute and chronic altitude exposure. J Appl Physiol 2001;90:17-22. https://doi.org/10.1152/jappl.2001.90.1.17
  30. Krishnan J, Suter M, Windak R, et al. Activation of a HIF1alphaPPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab 2009;9:512-24. https://doi.org/10.1016/j.cmet.2009.05.005
  31. Chen J, Chen J, Fu H, et al. Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway. Am J Physiol Endocrinol Metab 2019;317:E710-22. https://doi.org/10.1152/ajpendo.00052.2019
  32. Maccallini C, Mollica A, Amoroso R. The positive regulation of eNOS signaling by PPAR agonists in cardiovascular diseases. Am J Cardiovasc Drugs 2017;17:273-81. https://doi.org/10.1007/s40256-017-0220-9
  33. Jain IH, Calvo SE, Markhard AL, et al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 2020;181:716-27.e11. https://doi.org/10.1016/j.cell.2020.03.029
  34. St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006;127:397-408. https://doi.org/10.1016/j.cell.2006.09.024
  35. Muoio DM, Koves TR. Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1 alpha: implications for metabolic disease. Appl Physiol Nutr Metab 2007;32:874-83. https://doi.org/10.1139/H07-083
  36. Schlaepfer IR, Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology 2020;161:bqz046. https://doi.org/10.1210/endocr/bqz046
  37. Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res 2014;53:124-44. https://doi.org/10.1016/j.plipres.2013.12.001
  38. Huang TY, Zheng D, Houmard JA, Brault JJ, Hickner RC, Cortright RN. Overexpression of PGC-1α increases peroxisomal activity and mitochondrial fatty acid oxidation in human primary myotubes. Am J Physiol Endocrinol Metab 2017;312:E253-63. https://doi.org/10.1152/ajpendo.00331.2016
  39. Chu J, Xing C, Du Y, et al. Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication. Nat Metab 2021;3:1466-75. https://doi.org/10.1038/s42255-021-00479-4
  40. Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008;118:829-38. https://doi.org/10.1172/JCI34275
  41. Lopes-Marques M, Machado AM, Ruivo R, Fonseca E, Carvalho E, Castro LFC. Expansion, retention and loss in the Acyl-CoA synthetase "Bubblegum" (Acsbg) gene family in vertebrate history. Gene 2018;664:111-8. https://doi.org/10.1016/j.gene.2018.04.058
  42. Zhang M, Li F, Ma XF, et al. Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro. BMC Genomics 2019;20:743. https://doi.org/10.1186/s12864-019-6116-0