Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.01.1.067

Molecular Action of Prostaglandin to Mediate Insect Immunity and Its Application to Develop Novel Insect Control Techniques  

Kim, Yonggyun (Department of Plant Medicals, College of Life Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 173-195 More about this Journal
Abstract
Like vertebrates, insects synthesize various eicosanoids after the committed catalytic step of phospholipase A2 (PLA2). However, the subsequent biosynthetic steps exhibit some deviation from those of vertebrates. Due to little composition of arachidonic acid in insect phospholipids, PLA2 releases linoleic acid, which is another polyunsaturated fatty acid and relatively rich in insect phospholipids, to synthesize arachidonic acid via chain extension and desaturation. Resulting arachidonic acid is then oxygenated into a prostaglandin (PG), PGH2, by a specific peroxidase called peroxynectin, but not by cyclooxygenase. PGH2 is then isomerized to various PGs such as PGA2, PGD2, PGE2, PGI2, and a thromboxane (TXB2). All four epoxyeicosatrienoic acids such as 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET are also synthesized from arachidonic acid by oxygenation of vertebrate types of monooxygenases. However, the other type of eicosanoids called leukotrienes are found in insect tissues but their synthetic pathway is unclear. Eicosanoids mediate various insect physiological processes such as metabolism, excretion, immunity, and reproduction. Thus, identification of novel compounds interrupting eicosanoid biosynthesis would be a novel approach to develop insecticides. This review focuses on PGs and their immune mediation.
Keywords
Prostaglandin; Immunity; Signal transduction; Biosynthesis; Insect pest control;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Yajima, M., Takada, M., Takahashi, N., Kikuchi, H., Natori, S., Oshima, Y., Kurata, S., 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. Biochem J. 371, 205-210.   DOI
2 Roberts, D.W., Hajek, A.E., 1992. Entomopathogenic fungi as bioinsecticides. in: Leatham, G.F. (Ed.), Frontiers in Industrial Mycology. Chapman and Hall, New York, pp 144-159.
3 Roy, M.C., Nam, K., Kim, J., Stanley, D., Kim, Y., 2021. Thromboxane mobilizes insect blood cells to infection foci. Front. Immunol. 12, 791319   DOI
4 Frappier, F., Ferron, P., Pais, M., 1975. Chimie des champignons entomopathogenes - le beauvellide, nouveau cyclodepsipeptide isole d'un Beauveria tenella. Phytochemistry 14, 2703-2705.   DOI
5 Morishima, I., Yamano, Y., Inoue, K., Matsuo, N., 1997. Eicosanoids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett. 419, 83-86.   DOI
6 Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476.   DOI
7 Goettel, M.S., Eilenberg, J., Glare, T., 2005. Entomopathogenic fungi and their role in regulaion of insect populations. in: Gilbert, L.I., Iatrou, K., Gill, S.S. (Eds.), Comprehensive Mol Insect Science, vol 6, Elsevier, New York, pp 361-405.
8 Vey, A., Hoagland, R.E., Butt, T.M., 2001. Toxic metabolites of fungal biocontrol agents. in: Butt, T.M., Jackson, C., Magan, N. (Eds.), Fungal Biocontrol Agents, CABI Publishing, Wallingford, pp. 311-346.
9 von Euler, U.S., 1936. On the specific vasodilating and plain muscle stimulating substances from accessory genital glands in men and certain animals (prostaglandin and vesiglandin). J. Physiol. 88, 213-234.   DOI
10 Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annu. Rev. Entomol. 42, 611-643.   DOI
11 Groen, C.M., Jayo, A., Parsons, M., Tootle, T.L., 2015. Prostaglandins regulate nuclear localization of Fascin and its function in nucleolar architecture. Mol. Biol. Cell. 26, 1901-1917.   DOI
12 Hajek, A.E., St. Leger, R.J., 1994. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39, 293-322.   DOI
13 Hamill, R.L., Higgens, C.E., Boaz, H.E., Gorman, M., 1969. The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahed. Lett. 49, 4255-4258.
14 Han, G.D., Na, J., Chun, Y.S., Kumar, S., Kim, W., Kim, Y., 2017. Chlorine dioxide enhances lipid peroxidation through inhibiting calcium-independent cellular PLA2 in larvae of the Indianmeal moth, Plodia interpunctella. Pestic. Biochem. Physiol. 143, 48-56.   DOI
15 Benfarhat-Touzri, D., Ben Amira, A., Ben khedher, S., Givaudan, A., Jaoua, S., Tounsi, S., 2014. Combinatorial effect of Bacillus thuringiensis kurstaki and Photorhabdus luminescens against Spodoptera littoralis (Lepidoptera: Noctuidae). J. Basic Microbiol. 54, 1160-1165.   DOI
16 Al Baki, M.A., Roy, C.M., Lee, D.H., Stanley, D., Kim, Y., 2021. The prostanoids, thromboxanes, mediate hemocytic immunity to bacterial infection in the lepidopteran Spodoptera exigua. Dev. Comp. Immunol. 120, 104069.   DOI
17 Merchant, D., Ertl, R.L., Rennard, S.I., Stanley, D.W., Miller, J.S., 2008. Eicosanoids mediate insect hemocyte migration. J. Insect Physiol. 54, 215-221.   DOI
18 Ahmed, S., Kim, Y., 2020. Prostaglandin catabolism in Spodoptera exigua, a lepidopteran insect. J. Exp. Biol. 223, jeb233221.   DOI
19 Krasnoff, S.B., Gupta, S., St. Leger, R.J., Renwick, J.A., Roberts, D.W., 1991. Antifungal and insecticidal properties of efrapeptins: metabolites of the fungus Tolypocladium niveum. J. Invertebr. Pathol. 58, 180-188.   DOI
20 Amiri-Besheli, B., Khambay, B., Cameron, S., Deadman, M., Butt, T.M., 2000. Inter- and intra-specific variation in destruxin production by the insect pathogenic Metarhizium, and its significance to pathogenesis. Mycol. Res. 104, 447-452.   DOI
21 Bouarab, K., Adas, F., Gaquerel, E., Kloareg, B., Salaun, J.P., Potin, P., 2004. The innate immunity of a marine red alga involves oxylipins from both the eicosanoid and octadecanoid pathways. Plant Physiol. 135, 1838-1848.   DOI
22 Clem, R.J., 2005. The role of apoptosis in defense against baculovirus infection in insects. Curr. Top. Microbiol. Immunol. 289, 113-129.
23 Dennis, E.A., 1994. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269, 13057-13060.   DOI
24 Jung, S., Kwoen, M., Choi, J.M., Je, Y.H., Kim, Y., 2006. Parasitism of Cotesia spp. enhances susceptibility of Plutella xylostella to other pathogens. J. Asia Pac. Entomol. 9, 255-263.   DOI
25 Kim, G., Madanagopal, N., Lee, D., Kim, Y., 2009. Octopamine and 5-hydroxytryptamine mediate hemocytic phagocytosis and nodule formation via eicosanoids in the beet armyworm, Spodoptera exigua. Arch. Insect Biochem. Physiol. 70, 162-176.   DOI
26 Herrero, S., Ansems, M., Van Oers, M.M., Vlak, J.M., Bakker, P.L., de Maagd, R.A., 2007. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua. Insect Biochem. Mol. Biol. 37, 1109-1118.   DOI
27 Shao, Z., Cui, Y., Liu, X., Yi, H., Ji, J., Yu, Z., 1998. Processing of delta-endotoxin of Bacillus thuringiensis subsp. kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors. J. Invertebr. Pathol. 72, 73-81.   DOI
28 Shin, T.Y., Lee, M.R., Park, S.E., Lee, S.J., Kim, W.J., Kim, J.S., 2020. Pathogenesis-related genes of entomopathogenic fungi. Arch. Insect Biochem. Physiol. 105, e21747.   DOI
29 Shrestha, S., Kim, Y., 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38, 99-112.   DOI
30 Shrestha, S., Park, Y., Stanley, D., Kim, Y., 2010. Genes encoding phospholipase A2 mediate insect nodulation reactions to bacterial challenge. J. Insect Physiol. 56, 324-332.   DOI
31 Kim, Y.. Stanley, D., Ahmed, S., An, C., 2018a. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143.   DOI
32 Ferre, J., Real, M.D., van Rie, J., Jansens, S., Peferoen, M., 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. U. S. A. 88, 5119-5123.   DOI
33 Jung, J., Sajjadian, S.M, Kim, Y., 2019. Hemolin, an immunoglobulin-like peptide, opsonizes nonself targets for phagocytosis and encapsulation in Spodoptera exigua, a lepidopteran insect. J. Asia Pac. Entomol. 22, 947-956.   DOI
34 Baines, D., Desantis, T., Downer, R.G.H., 1992. Octopamine and 5-hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach (Periplaneta americana) haemocytes. J. Insect Physiol. 38, 905-914.   DOI
35 Barletta, A.B.F., Trisnadi, N., Ramirez, J.L., Barillas-Mury, C., 2019. Mosquito midgut prostaglandin release establishes systemic immune priming. iScience 19, 54-62.   DOI
36 Bergstrom, S., Ryhage, R., Samuelsson, B., Sjovall, J., 1962. The structure of prostaglandin E, F1 and F2. Acta Chem. Scandin. 16, 501-502.   DOI
37 Borkman, M., Storlien, L.H., Pan, D.A., Jenkins, A.B., Chisholm, D.J., Campbell, L.V., 1993. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N. Engl. J. Med. 328, 238-244.   DOI
38 Kramer, R.M., Hession, C., Johansen, B., Hayes, G., McGray, P., Chow, E.P., Tizard, R., Pepinsky, R.B., 1989. Structure and properties of a human non-pancreatic phospholipase A2. J. Biol. Chem. 264, 5768-5775.   DOI
39 Kim, H., Choi, D., Jung, J., Kim, Y., 2018b. Eicosanoid mediation of immune responses at early bacterial infectin stage and its inhibition by Photorhabdus temperata subsp. temperata, an entomopathogenic bacterium. Arch. Insect Biochem. Physiol. 99, e21502.   DOI
40 Kodaira, Y., 1961. Biochemical studies on the muscardine fungi in the silkworms, Bombyx mori. J. Fac. Text. Sci. Technol. Sinshu Uni. Sericult. 5, 1-68.
41 Kwon, H., Hall, D.R., Smith, R.C., 2021. Prostaglandin E2 signaling mediates oenocytoid immune cell function and lysis, limiting bacteria and Plasmodium oocyst survival in Anopheles gambiae. Front. Immunol. 12, 680020.   DOI
42 Lee, S.J., Yang, Y.T., Kim, S., Lee, M.R., Kim, J.C., Park, S.E., Hossain, M.S., Shin, T.Y., Nai, Y.S., Kim, J.S., 2019. Transcriptional response of bean bug (Riptortus pedestris) upon infection with entomopathogenic fungus, Beauveria bassiana JEF-007. Pest Manag. Sci. 75, 333-345.   DOI
43 Kim, Y., Ahmed, S., Al Baki, M.A., Kumar, S., Kim, K., Park, Y., Stanley, D., 2020. Deletion mutant of PGE2 receptor using CRISPR-Cas9 exhibits larval immunosuppression and adult infertility in a lepidopteran insect, Spodoptera exigua. Dev. Comp. Immunol. 111, 103743.   DOI
44 Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp temperata. Appl. Environ. Microbiol. 78, 3816-3823.   DOI
45 Shrestha, S., Kim, Y., 2010. Activation of immune-associated phospholipase A2 is functionally linked to Toll/Imd signal pathways in the red flour beetle, Tribolium castaneum. Dev. Comp. Immunol. 34, 530-537.   DOI
46 Kim, Y., Lee, S., Seo, S., Kim, K., 2016. Fatty acid composition of different tissues of Spodoptera exigua larvae and a role of cellular phospholipase A2. Korean J. Appl. Entomol. 55, 129-138.   DOI
47 Park, Y., Kumar, S., Kanumuri, R., Stanley, D., Kim, Y., 2015. A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth. Insect Biochem. Mol. Biol. 66, 13-23.   DOI
48 Wolf, M.J., Gross, R.W., 1996. The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A2. Implications for cardiac cycle-dependent alterations in phospholipolysis. J. Biol. Chem. 271, 20989-20992.   DOI
49 Park, J., Kim, Y., 2012. Change in hemocyte populations of the beet armyworm, Spodoptera exigua, in response to bacterial infection and eicosanoid mediation. Korean J. Appl. Entomol. 51, 349-356.   DOI
50 Park, J., Stanley, D., Kim, Y. 2013. Rac1 mediates cytokine-stimulated hemocyte spreading via prostaglandin biosynthesis in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 59, 682-689.   DOI
51 Park, Y., Kang, S., Mohamad, M.D., Kim, H., Jung, J., Kim, Y., 2017. Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode, Steinernema monticolum. J Invertebr Pathol 144, 74-87.   DOI
52 Phelps, P.K., Miller, J.S., Stanley, D.W., 2003. Prostaglandins, not lipoxygenase products, mediate insect microaggregation reactions to bacterial challenge in isolated hemocyte preparations. Comp. Biochem. Physiol. 136A, 409-416.   DOI
53 Lee, K.A., Kim, S.H., Kim, E.K., Ha, E.M., You, H., Kim, B., Kim, M.J., Kwon, Y., Ryu, J.H., Lee, W.J., 2013. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797-811.   DOI
54 Vatanparast, M., Ahmed, S., Sajjadian, S.M., Kim, Y., 2019. A prophylactic role of a secretory PLA2 of Spodoptera exigua against entomopathogens. Dev. Comp. Immunol. 95, 108-117.   DOI
55 Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743.   DOI
56 Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhust, R., Schmidt, O.. 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Heliocoverpa armigera larvae? Insect Biochem. Mol. Biol. 35, 729-739.   DOI
57 Omoto, C., McCoy, C.W., 1998. Toxicity of purified fungal toxin hirsutellin A to the citrus rust mite Phyllocoprura oleivora. J. Invertebr. Pathol. 72, 319-322.   DOI
58 Ovchinnikov, Y.A., Ivanov, V.T., Mikhaleva, I.I., 1971. The synthesis and some properties of beauvericin. Tetrahed. Lett. 2, 159-162.   DOI
59 Shrestha, S., Stanley, D., Kim, Y., 2011. PGE2 induces oenocytoid cell lysis via a G protein-coupled receptor in the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57, 1537-1544.   DOI
60 Krasnoff, S.B., Gupta, S., 1994. Identification of the antibiotic phomalactone from the entomopathogenic fungus Hirsutella thompsonii var. synnematosa. J. Chem. Ecol. 20, 293-302.   DOI
61 Ahmed, S., Kim, Y., 2019. PGE2 mediates cytoskeletal rearrangement of hemocytes via Cdc42, a small G protein, to activate actin-remodeling factors in Spodoptera exigua (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 102, e21607.   DOI
62 Ahmed, S., Kim, Y., 2021. PGE2 mediates hemocyte-spreading behavior by activating aquaporin via cAMP and rearranging actin cytoskeleton via Ca2+. Dev. Comp. Immunol. 125, 104230.   DOI
63 Stanley, D., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton University Press, Princeton, New Jersey.
64 Quiot, J.M., Vey, A., Vago, C., Pais, M., 1980. Action antivirale d'une mycotoxine. Etude d'une toxine de l'hyphomycete Metarhizium anisopliae (Metsch.) Sorok. en culture cellulaire. CR. Acad. Sci. Ser. D (Paris) 291, 763-766.
65 Rivero, A., 2006. Nitric oxide: an antiparasitic molecule of invertebrates. Trends Parasitol. 22, 219-225.   DOI
66 Mazet, I., Vey, A., 1995. Hirsutellin A, a toxic protein produced in vitro by Hirsutella thompsonii. Microbiol. Reading 141, 1343-1348.   DOI
67 Ahmed, S., Stanley, D., Kim, Y., 2018. An insect prostaglandin E2 synthase acts in immunity and reproduction. Front. Physiol. e01231.
68 Braune, S., Kupper, J.H., Jung, F., 2020. Effect of prostanoids on human platelet function: an overview. Int. J. Mol. Sci. 21, 9020.   DOI
69 Davidson, F.F., Dennis, E.A., 1990a. Amino acid sequence and circular dichroism of Indian cobra (Naja naja naja) venom acidic phospholipase A2. Biochim. Biophys. Acta 1037, 7-15.   DOI
70 Mollah, M.M.I., Kim, Y., 2020. Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A2 to suppress host insect immunity. BMC Microbiol. 20, 359.   DOI
71 Strand, M.R., 2008. The insect cellular immune response. Insect Sci. 15, 1-14.   DOI
72 Sadekuzzaman, M.D., Park, Y., Jung, J., Lee, S., Kim, K., Kim, Y., 2017b. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis. J. Invertebr. Pathol. 145, 13-22.   DOI
73 Ryu, Y., Oh, Y., Yoon, J., Cho, W., Baek, K., 2003. Molecular characterization of a gene encoding the Drosophila melanogaster phospholipase A2. Biochim. Biophys. Acta 1628, 206-210.   DOI
74 Sadekuzzaman, M., Gautam, N., Kim, Y., 2017a. A novel calcium-independent phospholipase A2 and its physiological roles in development and immunity of a lepidopteran insect, Spodoptera exigua. Dev. Comp. Immunol. 77, 210-220.   DOI
75 Davidson, F.F., Dennis, E.A., 1990b. Evolutionary relationships and implications for the regulation of phospholipase A2 from snake venom to human secreted forms. J. Mol. Evol. 31, 228-238.   DOI
76 Dudler, T., Chen, W.Q., Wang, S., Schneider, T., Annand, R.R., Dempcy, R.O., Crameri, R., Gmachl, M., Suter, M., Gelb, M.H., 1992. High-level expression in Escherichia coli and rapid purification of enzymatically active honey bee venom phospholipase A2. Biochim. Biophys. Acta 1165, 201-210.   DOI
77 Clark, K.D., Pech, L.L., Strand, M.R., 1997. Isolation and identification of a plasmatocyte-spreading peptide from the hemolymph of the lepidopteran insect Pseudoplusia includens. J. Biol. Chem. 272, 23440-23447.   DOI
78 Eom, S., Park, Y., Kim, H., Kim, Y., 2014. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521.   DOI
79 Srikanth, K., Park, J., Kim, Y., Stanley, D., 2011. Plasmatocyte-spreading peptide influences hemocyte behavior via eicosanoids. Arch. Insect Biochem. Physiol. 78, 145-160.   DOI
80 Vatanparast, M., Ahmed, S., Herrero, S., Kim, Y., 2018. A non-venomous sPLA2 of a lepidopteran insect: its physiological functions in development and immunity. Dev. Comp. Immunol. 89, 83-92.   DOI
81 Sadekuzzaman, M.D., Stanley, D., Kim, Y., 2018. Nitric Oxide mediates insect cellular immunity via phospholipase A2 activation. J. Innate Immun. 10, 1-12.   DOI
82 Sajjadian, S.M., Kim, Y., 2020. PGE2 upregulates gene expression of dual oxidase in a lepidopteran insect midgut via cAMP signalling pathway. Open Biol. 10, 200197.   DOI
83 Sajjadian, S.M., Vatanparast, M., Stanley, D., Kim, Y., 2019a. Secretion of secretory phospholipase A2 into Spodoptera exigua larval midgut lumen and its role in lipid digestion. Insect Mol. Biol. 28, 773-784.   DOI
84 Sajjadian, S.M., Ahmed, S., Al Baki, M.A., Kim, Y., 2020. Prostaglandin D2 synthase and its functional association with immune and reproductive processes in a lepidopteran insect, Spodoptera exigua. Gen. Comp. Endocrinol. 287, 113352.   DOI
85 Jung, S., Kim, Y., 2006a. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589.   DOI
86 Suzuki, A., Kanaoka, M., Isogai, A., Murakpshi, S., Ichinoe, M., Tamura, S., 1977. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahed. Lett. 25, 2167-2170.   DOI
87 Shrestha, S., Park, J., Ahn, S., Kim, Y., 2015. PGE2 mediates oenocytoid cell lysis via a sodium-potassium-chloride cotransporter. Arch. Insect Biochem. Physiol. 89, 218-229.   DOI
88 Kwon, H., Yang, Y., Kumar, S., Lee, D.W., Bajracharya, P., Calkins, T.L., Kim, Y., Pietrantonio, P.V., 2020. Characterization of the first insect prostaglandin (PGE2) receptor: MansePGE2R is expressed in oenocytoids and lipoteichoic acid (LTA) increases transcript expression. Insect Biochem. Mol. Biol. 117, 103290.   DOI
89 Ahmed, S., Hasan, A., Kim, Y., 2019. Overexpression of PGE2 synthase by in vivo transient expression enhances immunocompetency along with fitness cost in a lepidopteran insect. J. Exp. Biol. 222, jeb207019.   DOI
90 Ahmed, S., Al Baki, M.A., Lee, J., Seo, D.Y., Lee, D., Kim, Y., 2021. The first report of prostacyclin and its physiological roles in insects. Gen. Comp. Endocrinol. 301, 113659.   DOI
91 Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32, 1295-1309.   DOI
92 Mastore, M., Caramella, S., Quadroni, S., Brivio, M.F., 2021. Drosophila suzukii susceptibility to the oral administration of Bacillus thuringiensis, Xenorhabdus nematophila and its secondary metabolites. Insects 12, 635.   DOI
93 You, H.J., Woo, C.H., Choi, E.Y., Cho, S.H., Yoo, Y.J., Kim, J.H., 2005. Roles of Rac and p38 kinase in the activation of cytosolic phospholipase A2 in response to PMA. Biochem. J. 388, 527-535.   DOI
94 Hasan, Shabbir, A., Kim, Y. 2019. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. Insect Biochem. Mol. Biol. 111, 103179.   DOI
95 Park, J., Kim, Y., 2011. Benzylideneacetone suppresses both cellular and humoral immune responses of Spodoptera exigua and enhances fungal pathogenicity. J. Asia Pac. Entomol. 14, 423-427.   DOI
96 Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella. Proc. Natl. Acad. Sci. U. S. A. 101, 2696-2699.   DOI
97 Scarpati, M., Qi, Y., Govid, S., Singh, S., 2019. A combined computational strategy of sequence and structural analysis predicts the existence of a functional eicosanoid pathway in Drosophila melanogaster. PLoS ONE 14, e0211897.   DOI
98 Stanley, D., Kim, Y., 2020. Why most insects have very low proportions of C20 polyunsaturated fatty acids: the oxidative stress hypothesis. Arch. Insect Biochem. Physiol. 103, e21622.   DOI
99 Vasquez, A.M., Mouchlis, V.D., Dennis, E.A., 2018. Review of four major distinct types of human phospholipase A2. Adv. Biol. Regul. 67, 212-218.   DOI
100 Yamamoto, K., Hirowatari, A., 2021. Investigation of the substrate-binding site of a prostaglandin E synthase in Bombyx mori. Protein J. 40, 63-67.   DOI
101 Zhao, P., Li, J., Wang, Y., Jiang, H., 2007. Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochem. Mol. Biol. 37, 952-959.   DOI
102 van Rie, J., McGaughey, W.H., Johnson, D.E., Barnett, B.D., van Mellaert, H., 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 72-74.   DOI
103 Sajjadian, S.M., Vatanparast, M., Kim, Y., 2019b. Toll/IMD signal pathways mediate cellular immune responses via induction of intracellular PLA2 expression. Arch. Insect Biochem. Physiol. 101, e21559.   DOI
104 Mollah, M.M.I., Dekebo, A., Kim, Y., 2020. Immunosuppressive activities of novel PLA2 inhibitors from Xenorhabdus hominickii, an entomopathogenic bacterium. Insects 11, 505.   DOI
105 Tabashnik, B.E., Brevault, T., Carriere, Y., 2013. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotech. 31, 510-521.   DOI
106 Terry, B.J., Liu, W.C., Cianci, C.W., Proszynski, E., Fernandes, P., Bush, K., Meyers, E., 1992. Inhibition of herpes simplex virus type 1 DNA polymerase by the natural product oosporein. J. Antibiotics 45, 286-288.   DOI
107 Tootle, T.L., Spradling, A.C., 2008. Drosophila Pxt: a cyclooxygenase-like facilitator of follicle maturation. Development 135, 839-847.   DOI
108 Jallouli, W., Boukedi, H., Sellami, S., Frikha, F., Abdelkefi-Mesrati, L., Tounsi, S., 2018. Combinatorial effect of Photorhabdus luminescens TT01 and Bacillus thuringiensis Vip3Aa16 toxin against Agrotis segetum. Toxicon. 142, 52-57.   DOI
109 Imler, J.L., Bulet, P., 2005. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy 86, 1-21.   DOI
110 Ishibashi, K., 2006. Aquaporin subfamily with unusual NPA boxes. Biochem. Biophy. Acta 1758, 989-993.   DOI
111 Jeffs, L.B., Khachatourians, G.G., 1997. Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon. 35, 1351-1356.   DOI
112 Ji, D., Yi, Y., Kim, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239, 241-248.   DOI
113 Jiang, H., Kanost, M.R., 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30, 95-105.   DOI
114 Tyurina, Y.Y., Tyurin, V.A., Epperly, M.W., Greenberger, J.S., Kagan, V.E., 2008. Oxidative lipidomics of gamma-irradiation-induced intestinal injury. Free Radic. Biol. Med. 44, 299-314.   DOI
115 Jung, S., Kim, Y., 2006b. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control. 39, 201-209.   DOI
116 Kanost, M.R., Jiang, H., Yu, X.Q., 2004. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev. 198, 97-105.   DOI
117 Loeb, M.J., Martin, P.A., Hakim, R.S., Goto, S., Takeda, M., 2001. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J. Insect Physiol. 47, 599-606.   DOI
118 Matha, V., Weiser, J., Olejnicek, J., 1988. The effect of tolypin in Tolypocladium niveum crude extract against mosquito and blackfly larvae in the laboratory. Folia Parasitol. 35, 381-383.
119 Miller, J.S., 2005. Eicosanoids influence in vitro elongation of plasmatocytes from the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 59, 42-51.   DOI
120 Hrithik, T.H., Vatanparast, M., Ahmed, S., Kim, Y., 2021. Repat33 acts as a downstream component of eicosanoid signaling pathway mediating immune responses of Spodoptera exigua, a lepidopteran insect. Insects 12, 449.   DOI
121 Kim, Y., Stanley, D., 2021. Eicosanoid signaling in insect immunology: new genes and unresolved issues. Genes 12, 211.   DOI
122 Seo, S., Jeon, M.Y., Chun, W.S., Lee, S.H,, Seo, J.A., Yi, Y.G., Hong, Y.P., Kim, Y., 2011. Structure-activity analysis of benzylideneacetone for effective control of plant pests. Korean J. Appl. Entomol. 50, 107-113.   DOI
123 Seilhamer, J.J., Pruzanski, W., Vadas, P., Plant, S., Miller, J.A., Kloss, J., Johnson, L.K., 1989. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J. Biol. Chem. 264, 5335-5338.   DOI
124 Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacteria (Xenorhabdus nematophila and Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50, 171-178.   DOI
125 Seo, S., Jang, H., Kim, K., Kim, Y., 2010. Comparative analysis of immunsuppressive metabolites synthesized by an entomopathogenic bacterium, Photorhabdus temperata ssp. temperata, to select economic bacterial culture media. Korean J. Appl. Entomol. 49, 409-416.   DOI
126 Shafeeq, T., Ahmed, S., Kim, Y., 2018. Toll immune signal activates cellular immune response via eicosanoid. Dev. Comp. Immunol. 84, 408-419.   DOI