DOI QR코드

DOI QR Code

MHY2251, a New SIRT1 Inhibitor, Induces Apoptosis via JNK/p53 Pathway in HCT116 Human Colorectal Cancer Cells

  • Yong Jung, Kang (Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University) ;
  • Young Hoon, Kwon (Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University) ;
  • Jung Yoon, Jang (Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University) ;
  • Jun Ho, Lee (Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University) ;
  • Sanggwon, Lee (Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University) ;
  • Yujin, Park (Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University) ;
  • Hyung Ryong, Moon (Department of Manufacturing Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University) ;
  • Hae Young, Chung (Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University) ;
  • Nam Deuk, Kim (Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University)
  • Received : 2022.03.25
  • Accepted : 2022.06.19
  • Published : 2023.01.01

Abstract

Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

Keywords

Acknowledgement

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1F1A1051265) and the Basic Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07044648). We would like to thank the Aging Tissue Bank (http://grscicoll.org/institution/aging-tissue-bank) for providing research information.

References

  1. Alves-Fernandes, D. K. and Jasiulionis, M. G. (2019) The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int. J. Mol. Sci. 20, 3153. https://doi.org/10.3390/ijms20133153
  2. Ashkenazi, A. (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19, 325-331. https://doi.org/10.1016/j.cytogfr.2008.04.001
  3. Aubrey, B. J., Kelly, G. L., Janic, A., Herold, M. J. and Strasser, A. (2018) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25, 104-113. https://doi.org/10.1038/cdd.2017.169
  4. Chen, X., Sun, K., Jiao, S., Cai, N., Zhao, X., Zou, H., Xie, Y., Wang, Z., Zhong, M. and Wei, L. (2014) High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci. Rep. 4, 7481. https://doi.org/10.1038/srep07481
  5. Chrun, E. S., Modolo, F. and Daniel, F. I. (2017) Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol. Res. Pract. 213, 1329-1339. https://doi.org/10.1016/j.prp.2017.06.013
  6. Cory, S. and Adams, J. M. (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647-656. https://doi.org/10.1038/nrc883
  7. Dhanasekaran, D. N. and Reddy, E. P. (2008) JNK signaling in apoptosis. Oncogene 27, 6245-6251. https://doi.org/10.1038/onc.2008.301
  8. Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516. https://doi.org/10.1080/01926230701320337
  9. Fan, T. J., Han, L. H., Cong, R. S. and Liang, J. (2005) Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. 37, 719-727. https://doi.org/10.1111/j.1745-7270.2005.00108.x
  10. Fulda, S. (2015) Targeting apoptosis for anticancer therapy. Semin. Cancer Biol. 31, 84-88. https://doi.org/10.1016/j.semcancer.2014.05.002
  11. Gerschenson, L. and Rotello, R. (1992) Apoptosis: a different type of cell death. FASEB J. 6, 2450-2455. https://doi.org/10.1096/fasebj.6.7.1563596
  12. Ghosh, A., Sengupta, A., Seerapu, G. P. K., Nakhi, A., Ramarao, E. V. S., Bung, N., Bulusu, G., Pal, M. and Haldar, D. (2017) A novel SIRT1 inhibitor, 4bb induces apoptosis in HCT116 human colon carcinoma cells partially by activating p53. Biochem. Biophys. Res. Commun. 488, 562-569. https://doi.org/10.1016/j.bbrc.2017.05.089
  13. Gottlieb, T. M. and Oren, M. (1998) p53 and apoptosis. Semin. Cancer Biol. 8, 359-368. https://doi.org/10.1006/scbi.1998.0098
  14. Halasa, M., Adamczuk, K., Adamczuk, G., Afshan, S., Stepulak, A., Cybulski, M. and Wawruszak, A. (2021) Deacetylation of transcription factors in carcinogenesis. Int. J. Mol. Sci. 22, 11810. https://doi.org/10.3390/ijms222111810
  15. Hwang, N. L., Kang, Y. J., Sung, B., Hwang, S. Y., Jang, J. Y., Oh, H. J., Ahn, Y. R., Kim, D. H., Kim, S. J., Ullah, S., Hossain, M. A., Moon, H. R., Chung, H. Y. and Kim, N. D. (2017) MHY451 induces cell cycle arrest and apoptosis by ROS generation in HCT116 human colorectal cancer cells. Oncol. Rep. 38, 1783-1789. https://doi.org/10.3892/or.2017.5836
  16. Jang, J. Y., Kang, Y. J., Sung, B., Kim, M. J., Park, C., Kang, D., Moon, H. R., Chung, H. Y. and Kim, N. D. (2019) MHY440, a novel topoisomerase Ι inhibitor, induces cell cycle arrest and apoptosis via a ROS-dependent DNA damage signaling pathway in AGS human gastric cancer cells. Molecules 24, 96. https://doi.org/10.3390/molecules24010096
  17. Jing, L. and Anning, L. (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 15, 36-42. https://doi.org/10.1038/sj.cr.7290262
  18. Kabra, N., Li, Z., Chen, L., Li, B., Zhang, X., Wang, C., Yeatman, T., Coppola, D. and Chen, J. (2009) SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J. Biol. Chem. 284, 18210-18217. https://doi.org/10.1074/jbc.M109.000034
  19. Kang, Y. J., Jang, J. Y., Kwon, Y. H., Lee, J. H., Lee, S., Park, Y., Jung, Y. S., Im, E., Moon, H. R., Chung, H. Y. and Kim, N. D. (2022) MHY2245, a sirtuin inhibitor, induces cell cycle arrest and apoptosis in HCT116 human colorectal cancer cells. Int. J. Mol. Sci. 23, 1590. https://doi.org/10.3390/ijms23031590
  20. Kim, E. K. and Choi, E. J. (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 1802, 396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
  21. Kim, S. H., Kang, Y. J., Sung, B., Kim, D. H., Lim, H. S., Kim, H. R., Kim, S. J., Yoon, J. H., Moon, H. R., Chung, H. Y. and Kim, N. D. (2015) MHY-449, a novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative, mediates oxidative stress-induced apoptosis in AGS human gastric cancer cells. Oncol. Rep. 34, 288-294. https://doi.org/10.3892/or.2015.3984
  22. Lee, W. Y., Lee, W. T., Cheng, C. H., Chen, K. C., Chou, C. M., Chung, C. H., Sun, M. S., Cheng, H. W., Ho, M. N. and Lin, C. W. (2015) Repositioning antipsychotic chlorpromazine for treating colorectal cancer by inhibiting sirtuin 1. Oncotarget 6, 27580. https://doi.org/10.18632/oncotarget.4768
  23. Li, D. (2018) Recent advances in colorectal cancer screening. Chronic Dis. Transl. Med. 4, 139-147.
  24. Li, X. L., Zhou, J., Chen, Z. R. and Chng, W. J. (2015) p53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation. World J. Gastroenterol. 21, 84-93. https://doi.org/10.3748/wjg.v21.i1.84
  25. Liu, H. and Cheng, X. H. (2018) MiR-29b reverses oxaliplatin-resistance in colorectal cancer by targeting SIRT1. Oncotarget 9, 12304-12315. https://doi.org/10.18632/oncotarget.24380
  26. Lv, L., Shen, Z., Zhang, J., Zhang, H., Dong, J., Yan, Y., Liu, F., Jiang, K., Ye, Y. and Wang, S. (2014) Clinicopathological significance of SIRT1 expression in colorectal adenocarcinoma. Med. Oncol. 31, 965. https://doi.org/10.1007/s12032-014-0965-9
  27. Mariadason, J. M. (2008) HDACs and HDAC inhibitors in colon cancer. Epigenetics 3, 28-37. https://doi.org/10.4161/epi.3.1.5736
  28. O'Brien, M. A. and Kirby, R. (2008) Apoptosis: a review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease. J. Vet. Emerg. Crit. Care 18, 572-585. https://doi.org/10.1111/j.1476-4431.2008.00363.x
  29. Ocker, M. (2010) Deacetylase inhibitors - focus on non-histone targets and effects. World J. Biol. Chem. 1, 55-61. https://doi.org/10.4331/wjbc.v1.i5.55
  30. Park, H. S., Hwang, H. J., Kim, G. Y., Cha, H. J., Kim, W. J., Kim, N. D., Yoo, Y. H. and Choi, Y. H. (2013) Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bcl-2 family. Mar. Drugs 11, 2347-2364. https://doi.org/10.3390/md11072347
  31. Park, H. S., Kim, G. Y., Nam, T. J., Kim, N. D. and Choi, H. Y. (2011) Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. J. Food Sci. 76, T77-T83. https://doi.org/10.1111/j.1750-3841.2011.02099.x
  32. Saelens, X., Festjens, N., Walle, L. V., Van Gurp, M., Van Loo, G. and Vandenabeele, P. (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861-2874. https://doi.org/10.1038/sj.onc.1207523
  33. Shabason, J. E. and Camphausen, K. (2010) HDAC inhibitors in cancer care. Oncology 24, 180-185.
  34. Solomon, J. M., Pasupuleti, R., Xu, L., McDonagh, T., Curtis, R., DiStefano, P. S. and Huber, L. J. (2006) Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell. Biol. 26, 28-38. https://doi.org/10.1128/MCB.26.1.28-38.2006
  35. Tae, I. H., Son, J. Y., Lee, S. H., Ahn, M. Y., Yoon, K., Yoon, S., Moon, H. R. and Kim, H. S. (2020) A new SIRT1 inhibitor, MHY2245, induces autophagy and inhibits energy metabolism via PKM2/mTOR pathway in human ovarian cancer cells. Int. J. Biol. Sci. 16, 1901-1916. https://doi.org/10.7150/ijbs.44343
  36. van der Veer, E., Ho, C., O'Neil, C., Barbosa, N., Scott, R., Cregan, S. P. and Pickering, J. G. (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 282, 10841-10845. https://doi.org/10.1074/jbc.C700018200
  37. Wan, M.-l., Wang, Y., Zeng, Z., Deng, B., Zhu, B.-s., Cao, T., Li, Y.-k., Xiao, J., Han, Q. and Wu, Q. (2020) Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci. Rep. 40, BSR20200265. https://doi.org/10.1042/bsr20200265
  38. Wachter, F., Grunert, M., Blaj, C., Weinstock, D. M., Jeremias, I. and Ehrhardt, H. (2013) Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling. Cell Commun. Signal. 11, 27. https://doi.org/10.1186/1478-811X-11-27
  39. Wong, R. S. (2011) Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87. https://doi.org/10.1186/1756-9966-30-87
  40. Wu, Q., Wu, W., Fu, B., Shi, L., Wang, X. and Kuca, K. (2019) JNK signaling in cancer cell survival. Med. Res. Rev. 39, 2082-2104. https://doi.org/10.1002/med.21574
  41. Yang, Y., Zhang, Y., Wang, L. and Lee, S. (2017) Levistolide A induces apoptosis via ROS-mediated ER stress pathway in colon cancer cells. Cell Physiol. Biochem. 42, 929-938. https://doi.org/10.1159/000478647
  42. Yue, J. and Lopez, J. M. (2020) Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci. 21, 2346. https://doi.org/10.3390/ijms21072346
  43. Zhang, D., Zhou, Q., Huang, D., He, L., Zhang, H., Hu, B., Peng, H. and Ren, D. (2019) ROS/JNK/c-Jun axis is involved in oridonininduced caspase-dependent apoptosis in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 513, 594-601. https://doi.org/10.1016/j.bbrc.2019.04.011
  44. Zhu, G., Pan, C., Bei, J. X., Li, B., Liang, C., Xu, Y. and Fu, X. (2020) Mutant p53 in cancer progression and targeted therapies. Font. Oncol. 10, 595187.  https://doi.org/10.3389/fonc.2020.595187