• Title/Summary/Keyword: molded substrate

Search Result 28, Processing Time 0.026 seconds

Introduction of Routable Molded Lead Frame and its Application (RtMLF(Routable Molded Lead Frame) 패키지 소개 및 응용)

  • Kim, ByongJin;Bang, Wonbae;Kim, GiJung;Jung, JiYoung;Yoon, JuHoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.41-45
    • /
    • 2015
  • RtMLF (Routable Molded Lead Frame) based on molded substrate has been developed to maximize advantages of both leadframe product which has high thermal and electrical performance and laminate product which accommodates more I/O count and keeps fan-in/fan-out design flexibility. Due to its structural features, RtMLF provided excellent thermal and electrical performance which was confirmed with simulation. The RtMLF samples were manufactured and its reliability analysis was done to evaluate the opportunities of the production and application.

Minimization of Weld Lines in Two Shot Molded Parts with Microlenses (미소 렌즈가 내재화된 이중사출 성형제품의 웰드라인 최소화)

  • 신주경;민병권;김영주;강신일
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • A new design based on the appropriate geometry of molded part and type of runner system under the optimal processing conditions was proposed to minimize the micro weld lines on the sub deco surface molded by two shot molding. Theoretical and experimental studies were conducted to examine the cause of the weld lines during the overmolding process in two shot molding. Various dimensions and geometries of substrate$(1^{st}shot)$ and the wall thickness of overmold$(2^{nd}shot)$ have been proposed to avoid the weld lines which are the most inevitable appearance defects occurred on the sub deco. The each design proposal was analyzed by mold flow analysis after part modeling. The analysis results were compared with molded part from mass production tool. It could be seen that from the analysis that the proper geometry of plastic part and type of runner system considering pressure drop under the optimal processing conditions were the most influential factors to avoid weld lines occured on the sub deco.

Research on Process Technology of Molded Bridge Die on Substrate (MBoS) for Advanced Package (Advanced Package용 Molded Bridge Die on Substrate(MBoS) 공정 기술 연구)

  • Jaeyoung Jeon;Donggyu Kim;Wonseok Choi;Yonggyu Jang;Sanggyu Jang;Yong-Nam Koh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.16-22
    • /
    • 2024
  • With advances of artificial intelligence (AI) technology, the demand is increasing for high-end semiconductors in various places such as data centers. In order to improve the performance of semiconductors, reducing the pitch of patterns and increasing density of I/Os are required. For this issue, 2.5dimension(D) packaging is gaining attention as a promising solution. The core technologies used in 2.5D packaging include microbump, interposer, and bridge die. These technologies enable the implementation of a larger number of I/Os than conventional methods, enabling a large amount of information to be transmitted and received simultaneously. This paper proposes the Molded Bridge die on Substrate (MBoS) process technology, which combines molding and Redistribution Layer (RDL) processes. The proposed MBoS technology is expected to contribute to the popularization of next-generation packaging technology due to its easy adaption and wide application areas.

Injection Molding of High Aspect Ratio Nano Features Using Stamper Heating/Cooling Process (스탬퍼 가열/냉각을 이용한 고세장비 나노 구조물 성형)

  • Yoo, Y.E.;Choi, S.J.;Kim, S.K.;Choi, D.S.;Whang, K.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.20-24
    • /
    • 2007
  • Polypropylene substrate with hair-like nano features(aspect $ratio{\sim}10$) on the surface is fabricated by injection molding process. Pure aluminum plate is anodized to have nano pore array on the surface and used as a stamper for molding nano features, The size and the thickness of the stamper is $30mm{\times}30mm$ and 1mm. The fabricated pore is about 120nm in diameter and 1.5 um deep. For molding of a substrate with nano-hair type of surface features, the stamper is heated up over $150^{\circ}C$ before the filling stage and cooled down below $70^{\circ}C$ after filling to release the molded part. For heating the stamper, stamper itself is used as a heating element by applying electrical power directly to each end of the stamper. The stamper becomes cooled down without circulation of coolant such as water or oil. With this new stamper heating method, nano hairs with aspect ratio of about 10 was successfully injection molded. We also found the heating & cooling process of the stamper is good for releasing of molded nano-hairs.

A study on high aspect ratio of plastic nano hair molding (고세장비 플라스틱 나노헤어 성형에 관한 연구)

  • Kim T.H.;Yoo Y.E.;Seo Y.H.;Lee H.J.;Park Y.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.471-472
    • /
    • 2006
  • High aspect ratio of nano hairs on a plastic substrate is molded using thermoplstic materials including COC, PP, PC and PMMA. As a template for molding nano hairs, AAO membrane is adopted, which is 60um thick and 13mm in diameter. This membrane has about 109 of through-holes of which diameter is around 200nm. This AAO membrane and the pellet of materials are stacked in the mold and pressed to mold after heating up to be melted. The AAO membrane is removed using KOH to obtain the molded nano hairs. As a result, the diameter of the molded hairs is around 200nm and the length is $2um{\sim}60um$ depending on the molding conditions and materials.

  • PDF

Molding of High Aspect Ratio Nano-Hair Array and Its Applications (고세장비 나노 헤어 성형 및 응용)

  • Yoo, Y.E.;Kim, T.H.;Seo, Y.H.;Choi, D.S.;Lee, H.J.;Kim, W.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.113-116
    • /
    • 2006
  • Some nano hair systems in the nature are found to show excellent adhesive characteristic, which is called dry adhesive, and synthetic nano hairs to mimic these adhesiveness are believed to have many applications. To develop a practical synthetic dry adhesive system, we mold nano hairs on plastic substrates using thermoplstic materials including COC, PP, PC and PMMA. and estimate the moldability and the adhesive characteristic. As a template for molding nano hairs, AAO membrane is first adopted, which is 60um thick and 13mm in diameter. This membrane has about a billion of through-holes of which diameter is around 200nm. This AAO membrane and the pellet of materials are stacked in the mold and pressed to mold after heating up to be melted. The AAO membrane is removed using KOH to obtain the molded nano hairs. As a result, the diameter of the molded hairs is around 200nm and the length is $2um{\sim}60um$ depending on the molding conditions and materials. The molded nano hair substrates is estimated to show much better adhesive characteristic than a substrate without nano hairs.

  • PDF

A Study on the Rotation-Induced Birefringence in Plastic Disk Substrate (회전에 의해 플라스틱 기판에 추가로 발생하는 복굴절의 측정에 관한 연구)

  • 김종선;윤경환
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.730-737
    • /
    • 2003
  • Extensive studies have been conducted for reducing the residual stresses and birefringence in injection-molded optical disk substrate Flow-induced and thermally-induced stresses and birefringence have been found as two main sources during injection molding process. However, high speed rotation also induces extra stresses and birefringence in real operation of disk drives. In the present paper rotation-induced in-plane birefringence has been measured and presented for CD and DVD substrates at different radial position. About 10 - 15 nm of extra retardation in one pass has been measured up to 4,800 rpm. The distribution of extra rotation-induced birefringence will be valuable data for designing an optimal optical disk substrate. Finally, experimental results were compared with the extra stresses calculated from simple formulation.

A Study on the Rotation-induced Birefringence in Plastic Disk Substrate (회전에 의한 플라스틱 기판에 야기되는 복굴절의 측정에 관한 연구)

  • 김종선;윤경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.470-473
    • /
    • 2003
  • Extensive studies have been conducted for reducing the residual stresses and birefringence in injection-molded optical disk substrate. Flow-induced and thermally-induced stresses and birefringence have been found as two main sources during injection molding process. However, high speed rotation also induces extra stresses and birefringence in real operation of disk drives. In the present paper rotation-induced in-plane birefringence has been measured and presented for CD and DVD substrates at different radial position. About 10 - 15 nm of extra retardation has been measured up to 4,800 rpm.

  • PDF

Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate (유리섬유가 강화된 필름 삽입 사출품의 섬유배향 및 휨)

  • Kim, Seong-Yun;Kim, Hyung-Min;Lee, Doo-Jin;Youn, Jae-Ryoun;Lee, Sung-Hee
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.117-125
    • /
    • 2012
  • Warpage of the film insert molded (FIM) part is caused by an asymmetric residual stress distribution. Asymmetric residual stress and temperature distribution is generated by the retarded heat transfer in the perpendicular direction to the attached film surface. Since warpage was not prevented by controlling injection molding conditions, glass fiber (GF) filled composites were employed as substrates for film insert molding to minimize the warpage. Distribution of short GFs was evaluated by using micro-CT equipment. Proper models for micro mechanics, anisotropic thermal expansion coefficients, and closure approximation should be selected in order to calculate fiber orientation tensor and warpage of the FIM part with the composite substrate. After six kinds of micro mechanics models, three models of the thermal expansion coefficient and five models of the closure approximation had been considered, the Mori-Tanaka model, the Rosen and Hashin model, and the third orthotropic closure approximation were selected in this study. The numerically predicted results on fiber orientation tensor and warpage were in good agreement with experimental results and effects of GF reinforcement on warpage of the FIM composite specimen were identified by the numerical results.

Fabrication of nano pattern using the injection molding (사출성형을 이용한 미세 패턴 성형)

  • Lee, Kwan-Hee;Yoo, Yeong-Eun;Kim, Sun-Kyoung;Kim, Tae-Hoon;Je, Tae-Jin;Choi, Doo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1532-1536
    • /
    • 2007
  • A plastic substrate with tiny rectangular pillars less than 100nm is injection molded to study pattern replication in injection molding. The size of the substrate is 50mm ${\times}$ 50mm and 1mm thick. The substrate has 9 patterned areas of which size is 2mm ${\times}$ 2mm respectively. The lengths of the pillars are 50nm, 100nm, 150nm and 200nm and the width and height are 50nm and about 100nm respectively. A pattern master is fabricated by e-beam writing using positive PR(photo resist) and then a nickel stamper replicated from the PR master by nickel electro-plating. Cr is deposited on the PR pattern master before nickel electro-plating as a conducting layer. Using this nickel stamper, several injection molding experiments are done to investigate effects of the injection molding parameters such as mold temperature, injection rate, packing pressure or pattern location on the replication of the patterns under 100nm.

  • PDF