• 제목/요약/키워드: model concrete

검색결과 5,283건 처리시간 0.029초

비선형 스트럿-타이 모델 방법에 의한 철근콘크리트 코벨의 강도 평가 (Strength Evaluation of Reinforced Concrete Corbels using Nonlinear Strut-Tie Model Approach)

  • 윤영묵;신용목
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.391-396
    • /
    • 2003
  • The concrete corbels consist of various failure mechanisms such as the yielding of the tension reinforcement, the crushing or splitting from compression concrete struts, and localized bearing or shearing failure under the loading plate. However, predicting those failure mechanisms is very difficult. In this study, the ACI 318-02, the softened strut-tie model approach, and the nonlinear strut-tie model approach are applied to ultimate strength analysis of normal strength concrete corbels tested to failure. From the result of the analysis, an effective analysis and design method of normal strength concrete corbels is suggested.

  • PDF

성숙도 방법을 이용한 불포화 폴리에스터 수지 폴리머 콘크리트의 압축강도 예측 (Prediction of Compressive Strength of Unsaturated Polyester Resin Based Polymer Concrete Using Maturity Method)

  • 최기봉;김남길;이윤수;연규석
    • 한국농공학회논문집
    • /
    • 제59권6호
    • /
    • pp.19-27
    • /
    • 2017
  • This study investigated to predict the compressive strength of unsaturated polyester resin based polymer concrete using the maturity method. The test results show that the development of the compressive strength increased exponentially until an age of 24 hours. After 24 hours, the development of the compressive strength just increased gradually. This test result shows that the strength of unsaturated polyester resin based polymer concrete was developed mainly at the early age. Estimated datum temperature of unsaturated polyester resin based polymer concrete was $-20.67^{\circ}C$ which was much lower than of datum temperature ($-10^{\circ}C$) of Portland cement concrete. Also, this study result shows that the existing maturity index associated with Portland cement concrete was not applicable for polymer concrete because curing time of Portland cement concrete is different clearly with curing time of polymer concrete. The cause of different curing time was that there were different curing mechanisms between Portland cement concrete and polymer concrete. In order to best apply the experimental data to a model, CurveExpert Professional, the commercial software, was used to determine the predictive model regarding the compressive strength of unsaturated polyester resin based polymer concrete. As a result, Gompertz Relation or Weibull Model was an appropriate model as a predictive model. The proposed model can be used to predict the compressive strength, especially, it is more useful when the maturity is in the range between $40^{\circ}C{\cdot}h^{0.4}$ and $900^{\circ}C{\cdot}h^{0.4}$.

Effect of Fire Induced Spalling on the Response of Reinforced Concrete Beams

  • Kodur, V.K.R.;Dwaikat, M.B.
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권2호
    • /
    • pp.71-81
    • /
    • 2008
  • A macroscopic finite element model is applied to investigate the effect of fire induced spalling on the response of reinforced concrete (RC) beams. Spalling is accounted for in the model through pore pressure calculations in concrete. The principles of mechanics and thermodynamics are applied to compute the temperature induced pore pressure in the concrete structures as a function of fire exposure time. The computed pore pressure is checked against the temperature dependent tensile strength of concrete to determine the extent of spalling. Using the model, case studies are conducted to investigate the influence of concrete permeability, fire scenario and axial restraint on the fire induced spalling and also on the response of RC beams. Results from the analysis indicate that the fire induced spalling, fire scenario, and axial restraint have significant influence on the fire response of RC beams. It is also shown that concrete permeability has substantial effect on the fire induced spalling and thus on the fire response of concrete beams. The fire resistance of high strength concrete beams can be lower that that of normal strength concrete beams due to fire induced spalling resulting from low permeability in high strength concrete.

재료모델에 따른 유연 콘크리트 매트리스의 충돌 거동 평가 (Collision Behavior Evaluation of Flexible Concrete Mattress Depending on Material Models)

  • 류연선;조현만;김서현
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.70-77
    • /
    • 2015
  • The purpose of this study was to provide fundamental data for an anchor collision simulation of an FCM (flexible concrete mattress). Numerical material models (elastic-perfectly plastic model, Drucker-Prager model, and RHT concrete model) were compared. ANSYS Explicit Dynamics was used for collision analyses. An FE model was used for the anchor, FCM, andreinforcement bars. The results showed that the behavior of the FCM was verydifferent that those ofthe material models. In particular, the effect of the pressure dependent strength was most noticeable among the properties of concrete.

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

철근 콘크리트 구조물의 모델거동에 관한 연구 (Model Analysis of Reinforced Concrete Structure)

  • 오병환;김배식;이명규;전세진;김광수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.193-197
    • /
    • 1995
  • Computer-based methods have often been used in the structural analysis. But, regardless of the progress in the technique of structural analysis, there are inevitable limitations in consideration of the material and eometric nonlinearity and prediction of failure loads. Model analysis of concrete structure can supplement this kind of limitations to reasonably predict behavior of the structure. Similitude requirement in the reinforced concrete structure is often hard to be secured because of peculiar uncertainty of concrete. In this study, small scale model of subway box structure was constructed using strength model and results of model of subway box structure was constructed using strength model and results of model test and computer-based analysis were compared.

  • PDF

Dynamic fracture catastrophe model of concrete beam under static load

  • Chen, Zhonggou;Fu, Chuanqing;Ling, Yifeng;Jin, Xianyu
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.517-523
    • /
    • 2020
  • An experimental system on three point bending notched beams was established to study the fracture process of concrete. In this system, the acoustic emission (AE) was used to build the cumulative generation order (AGO) and dynamically track the process of microcrack evolution in concrete. A grey-cusp catastrophe model was built based on AE parameters. The results show that the concrete beams have significant catastrophe characteristic. The developed grey-cusp catastrophe model, based on AGO, can well describe the catastrophe characteristic of concrete fracture process. This study also provides a theoretical and technical support for the application of AE in concrete fracture prediction.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • 제20권2호
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Self-terminated carbonation model as an useful support for durable concrete structure designing

  • Woyciechowski, Piotr P.;Sokolowska, Joanna J.
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.55-64
    • /
    • 2017
  • The paper concerns concrete carbonation, the phenomena that occurs in every type of climate, especially in urban-industrial areas. In European Standards, including Eurocode (EC) for concrete structures the demanded durability of construction located in the conditions of the carbonation threat is mainly assured by the selection of suitable thickness of reinforcement cover. According to EC0 and EC2, the thickness of the cover in the particular class of exposure depends on the structural class/category and concrete compressive strength class which is determined by cement content and water-cement ratio (thus the quantitative composition) but it is not differentiated for various cements, nor additives (i.e., qualitative composition), nor technological types of concrete. As a consequence the selected thickness of concrete cover is in fact a far estimation - sometimes too exaggerated (too safe or too risky). The paper presents the elaborated "self-terminated carbonation model" that includes abovementioned factors and enables to indicate the maximal possible depth of carbonation. This is possible because presented model is a hyperbolic function of carbonation depth in time (the other models published in the literature use the parabolic function that theoretically assume the infinite increase of carbonation depth value). The paper discusses the presented model in comparison to other models published in the literature, moreover it contains the algorithm of concrete cover design with use of the model as well as an example of calculation of the cover thickness.

An analytical approach of behavior change for concrete dam by panel data model

  • Gu, Hao;Yang, Meng;Gu, Chongshi;Cao, Wenhan;Huang, Xiaofei;Su, Huaizhi
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.521-531
    • /
    • 2020
  • The behavior variation of concrete dam is investigated, based on a new method for analyzing the data model of concrete dam in service process for the limitation of wavelet transform for solving concrete dam service process model. The study takes into account the time and position of behavior change during the process of concrete dam service. There is no dependence on the effect quantity for overcoming the shortcomings of the traditional identification method. The panel data model is firstly proposed for analyzing the behavior change of composite concrete dam. The change-point theory is used to identify whether the behavior of concrete dams changes during service. The phase space reconstruction technique is used to reconstruct the phase plane of the trend effect component. The time dimension method is used to solve the construction of multi-transformation model of composite panel data. An existing 76.3-m-high dam is used to investigate some key issues on the behavior change. Emphasis is placed on conversion time and location for three time periods consistent with the practical analysis report for evaluating the validity of the analysis method of the behavior variation of concrete dams presented in this paper.