DOI QR코드

DOI QR Code

Dynamic fracture catastrophe model of concrete beam under static load

  • Chen, Zhonggou (School of Landscape Architecture, Zhejiang Agriculture and Forestry University) ;
  • Fu, Chuanqing (College of Civil Engineering and Architecture, Zhejiang University of Technology) ;
  • Ling, Yifeng (National Concrete Pavement Technology Center, Institute for Transportation) ;
  • Jin, Xianyu (College of Civil Engineering and Architecture, Zhejiang University)
  • Received : 2019.11.12
  • Accepted : 2020.05.18
  • Published : 2020.06.25

Abstract

An experimental system on three point bending notched beams was established to study the fracture process of concrete. In this system, the acoustic emission (AE) was used to build the cumulative generation order (AGO) and dynamically track the process of microcrack evolution in concrete. A grey-cusp catastrophe model was built based on AE parameters. The results show that the concrete beams have significant catastrophe characteristic. The developed grey-cusp catastrophe model, based on AGO, can well describe the catastrophe characteristic of concrete fracture process. This study also provides a theoretical and technical support for the application of AE in concrete fracture prediction.

Keywords

Acknowledgement

The study of this paper is financially supported by the National Basic Research Program of China 973 Program (Grant No. 2015CB655103), the Natural Science Foundation of China (Grant Nos. 51678529 and 51978620).

References

  1. Abdelrahman, M.A., ElBatanouny, M.K., Rose, J.R. and Ziehl, P.H. (2019), "Signal processing techniques for filtering acoustic emission data in prestressed concrete", Res. Nondestr. Eval., 30(3), 127-148. https://doi.org/10.1080/09349847.2018.1426800.
  2. Abouhussien, A.A. and Hassan, A.A.A. (2015), "Evaluation of damage progression in concrete structures due to reinforcing steel corrosion using acoustic emission monitoring", J. Civil Struct. Hlth Monit., 5(5), 751-765. https://doi.org/10.1007/s13349-015-0144-5.
  3. Asamene, K., Hudson, L. and Sundaresan, M. (2015), "Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels", Ultrasonics, 59, 86-93. https://doi.org/10.1016/j.ultras.2015.01.016.
  4. Barrios, F. and Ziehl, P.H. (2012), "Cyclic load testing for integrity evaluation of prestressed concrete girders", ACI Struct. J., 109(5), 615-623.
  5. Behnia, A., Chai, H.K. and Shiotani, T. (2014), "Advanced structural health monitoring of concrete structures with the aid of acoustic emission", Constr. Build. Mater., 65(65), 282-302. https://doi.org/10.1016/j.conbuildmat.2014.04.103.
  6. Carpinteri, A., Lacidogna, G., Niccolini, G. and Puzzi, S. (2008), "Critical defect size distributions in concrete structures detected by the acoustic emission technique", Meccanica, 43(3), 349-363. https://doi.org/10.1007/s11012-007-9101-7.
  7. Choi, C.K. and Cheung, S.H. (1994), "A simplified model for predicting the shear response of reinforced concrete membranes", Thin Wall. Struct., 19(1), 37-60. https://doi.org/10.1016/0263-8231(94)90004-3.
  8. Choi, C.K. and Cheung, S.H. (1996), "Tension stiffening model for planar reinforced concrete members", Comput. Struct., 59(1), 179-190. https://doi.org/10.1016/0045-7949(95)00146-8.
  9. Chu, H.Q. and Jiang, L.H. (2009), "Correlation analysis between concrete parameters and electrodeposition effect based on grey theory", J. Wuhan Univ. Technol., 31(7), 22-26.
  10. Desa, M.S.M., Ibrahim, M.H.W., Shahidan, S., Ghadzali, N.S. and Misri, Z. (2018), "Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review", IOP Conf. Ser.: Earth Environ. Sci., 140(1), 012142, April. https://doi.org/10.1088/1755-1315/140/1/012142
  11. Di Benedetti, M., Loreto, G., Matta, F. and Nanni, A. (2013), "Acoustic emission monitoring of reinforced concrete under accelerated corrosion", J. Mater. Civil Eng., 25(8), 1022-1029. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000647.
  12. Fan, X.Q., Hu, S.W. and Lu, J. (2016), "Damage and fracture processes of concrete using acoustic emission parameters", Comput. Concrete, 18(2), 267-278. https://doi.org/10.12989/cac.2016.18.2.267.
  13. Fu, C., Ye, H., Wang, K., Zhu, K. and He, C. (2019), "Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC)", Compos. Part B: Eng., 160, 158-166. https://doi.org/10.1016/j.compositesb.2018.10.045.
  14. Fu, C.Q., Jin, X.Y., Ye, H.L. and Jin, N.G. (2015), "Theoretical and experimental investigation of loading effects on chloride diffusion in saturated concrete", J. Adv. Concrete Technol., 13, 30-43. ttps://doi.org/10.3151/jact.13.30.
  15. Huo, L.S., Li, X., Chen, D.D. and Li, H.N. (2017), "Structural health monitoring using piezoceramic transducers as strain gauges and acoustic emission sensors simultaneously", Comput. Concrete, 20(5), 595-603. https://doi.org/10.12989/cac.2017.20.5.595.
  16. Iturrioz, I., Lacidogna, G. and Carpinteri, A. (2013), "Acoustic emission detection in concrete specimens: experimental analysis and simulations by a lattice model", Int. J. Damage Mech., 23(3), 327-358. https://doi.org/10.1177/1056789513494232.
  17. Jiang, G., Keller, J., Bond, P.L. and Yuan, Z. (2016), "Predicting concrete corrosion of sewers using artificial neural network", Water Res., 92, 52-60. https://doi.org/10.1016/j.watres.2016.01.029.
  18. Li, B., Cai, L. and Zhu, W. (2017), "Predicting service life of concrete structure exposed to sulfuric acid environment by grey system theory", Int. J. Civil Eng., 12, 1-11. https://doi.org/10.1007/s40999-017-0251-2.
  19. Li, G.D., Yamaguchi, D. and Nagai, M. (2007), "Prediction of relative dynamic elasticity modulus by extending a grey system theory", Measur. Sci. Technol., 18(3), 827-834. https://doi.org/10.1088/0957-0233/18/3/035
  20. Li, X. (2013), "Application of working face rock burst prediction of grey modeling cusp catastrophe analysis based on the acoustic emission", Appl. Mech. Mater., 373-375, 689-693. https://doi.org/10.4028/www.scientific.net/AMM.373-375.689.
  21. Mainali, G., Dineva, S. and Nordlund. E. (2015), "Experimental study on debonding of shotcrete with acoustic emission during freezing and thawing cycle", Cold Reg. Sci. Technol., 111, 1-12. https://doi.org/10.1016/j.coldregions.2014.11.014.
  22. Mostafapour, A., Davoodi, S. and Ghareaghaji, M. (2014), "Acoustic emission source location in plates using wavelet analysis and cross time frequency spectrum", Ultrasonics, 54(8), 2055-2062. https://doi.org/10.1016/j.ultras.2014.06.022.
  23. Nair, A. and Cai, C.S. (2010), "Acoustic emission monitoring of bridges: review and case studies", Eng. Struct., 32(6), 1704-1714. https://doi.org/10.1016/j.engstruct.2010.02.020.
  24. Ohno, K. and Ohtsu, M. (2010), "Crack classification in concrete based on acoustic emission", Constr. Build. Mater., 24, 2339-2346. https://doi.org/10.1016/j.conbuildmat.2010.05.004.
  25. Pazdera, L., Topolar, L., Danek, P., Smutny, J. and Mikulasek, K. (2016), "Evaluation of acoustic emission events generated at three point bending of different concrete specimens by spectral analysis", Solid State Phenomena, 258, 485-488. https://doi.org/10.4028/www.scientific.net/SSP.258.485.
  26. Pisani, A.M. (2018), "Behaviour under long-term loading of externally prestressed concrete beams", Eng. Struct., 160, 24-33. https://doi.org/10.1016/j.engstruct.2018.01.029.
  27. Rodriguez, P. and Celestino, T.B. (2019), "Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks", Eng. Fract. Mech., 210, 54-69. https://doi.org/10.1016/j.engfracmech.2018.06.027.
  28. Sagar, R.V. and Prasad, B.K.R. (2012), "A review of recent developments in parametric based acoustic emission techniques applied to concrete structures", Nondestr. Test. Eval., 27(1), 47-68. https://doi.org/10.1080/10589759.2011.589029.
  29. Wang, Y., Zhang, Y., Hu, H., Liu, S. and Yuan, L. (2014), "Identification of damage degree of concrete by acoustic emission and artificial neural network", J. Build. Mater., 67(10), 1497-1497.
  30. Wiedmann, A., Weise, F., Kotan, E., Muller, H.S. and Meng, B. (2017), "Effects of fatigue loading and alkali-silica reaction on the mechanical behavior of pavement concrete", Struct. Concrete, 18(4), 539-549. https://doi.org/10.1002/suco.201600179.
  31. Xie, Z.D., Guan, Y.J., Yu, X.H., Zhu, L.H. and Lin, J. (2018), "Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation", J. Central South Univ., 25(7), 1545-1559. https://doi.org/10.1007/s11771-018-3847-z
  32. Xu, J., Barnes, R.W. and Ziehl, P.H. (2013), "Evaluation of prestressed concrete beams based on acoustic emission parameters", Mater. Eval., 71(2), 176-185.
  33. Yuan, X., Li, B., Cui, G., Zhao, S. and Zhou, M. (2010), "Grey clustering theory to assess the effect of mineral admixtures on the cyclic sulfate resistance of concrete", J. Wuhan Univ. Technol., 25(2), 316-318. https://doi.org/10.1007/s11595-010-2316-9
  34. Yuyama, S., Li, Z.W., Yoshizawa, M., Tomokiyo, T. and Uomoto, T. (2001), "Evaluation of fatigue damage in reinforced concrete slab by acoustic emission", NDT&E Int., 34(6), 381-387. https://doi.org/10.1016/S0963-8695(01)00004-4
  35. Zhai, W., Li, J. and Zhou, Y. (2019), "Application of catastrophe theory to fracability evaluation of deep shale reservoir", Arab. J. Geosci., 12, 161. https://doi.org/10.1007/s12517-019-4332-1.
  36. Zhou, X., Yang, Y.Y., Li, X.Q. and Zhao, G.Q. (2016), "Acoustic emission characterization of the fracture process in steel fiber reinforced concrete", Comput. Concrete, 18(4), 923-936. https://doi.org/10.12989/cac.2016.18.4.923.
  37. Zohari, M.H., Epaarachchi, J.A. and Lau, K.T. (2013), "Modal acoustic emission investigation for progressive failure monitoring in thin composite plates under tensile test", Key Eng. Mater., 558, 65-75. https://doi.org/10.4028/www.scientific.net/KEM.558.65

Cited by

  1. A novel approach to the complete stress strain curve for plastically damaged concrete under monotonic and cyclic loads vol.28, pp.1, 2020, https://doi.org/10.12989/cac.2021.28.1.039