Browse > Article
http://dx.doi.org/10.12989/cac.2020.25.6.517

Dynamic fracture catastrophe model of concrete beam under static load  

Chen, Zhonggou (School of Landscape Architecture, Zhejiang Agriculture and Forestry University)
Fu, Chuanqing (College of Civil Engineering and Architecture, Zhejiang University of Technology)
Ling, Yifeng (National Concrete Pavement Technology Center, Institute for Transportation)
Jin, Xianyu (College of Civil Engineering and Architecture, Zhejiang University)
Publication Information
Computers and Concrete / v.25, no.6, 2020 , pp. 517-523 More about this Journal
Abstract
An experimental system on three point bending notched beams was established to study the fracture process of concrete. In this system, the acoustic emission (AE) was used to build the cumulative generation order (AGO) and dynamically track the process of microcrack evolution in concrete. A grey-cusp catastrophe model was built based on AE parameters. The results show that the concrete beams have significant catastrophe characteristic. The developed grey-cusp catastrophe model, based on AGO, can well describe the catastrophe characteristic of concrete fracture process. This study also provides a theoretical and technical support for the application of AE in concrete fracture prediction.
Keywords
concrete; damage; catastrophe model; grey-cusp theory; acoustic emission;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Li, B., Cai, L. and Zhu, W. (2017), "Predicting service life of concrete structure exposed to sulfuric acid environment by grey system theory", Int. J. Civil Eng., 12, 1-11. https://doi.org/10.1007/s40999-017-0251-2.
2 Li, G.D., Yamaguchi, D. and Nagai, M. (2007), "Prediction of relative dynamic elasticity modulus by extending a grey system theory", Measur. Sci. Technol., 18(3), 827-834.   DOI
3 Li, X. (2013), "Application of working face rock burst prediction of grey modeling cusp catastrophe analysis based on the acoustic emission", Appl. Mech. Mater., 373-375, 689-693. https://doi.org/10.4028/www.scientific.net/AMM.373-375.689.   DOI
4 Mainali, G., Dineva, S. and Nordlund. E. (2015), "Experimental study on debonding of shotcrete with acoustic emission during freezing and thawing cycle", Cold Reg. Sci. Technol., 111, 1-12. https://doi.org/10.1016/j.coldregions.2014.11.014.   DOI
5 Mostafapour, A., Davoodi, S. and Ghareaghaji, M. (2014), "Acoustic emission source location in plates using wavelet analysis and cross time frequency spectrum", Ultrasonics, 54(8), 2055-2062. https://doi.org/10.1016/j.ultras.2014.06.022.   DOI
6 Nair, A. and Cai, C.S. (2010), "Acoustic emission monitoring of bridges: review and case studies", Eng. Struct., 32(6), 1704-1714. https://doi.org/10.1016/j.engstruct.2010.02.020.   DOI
7 Ohno, K. and Ohtsu, M. (2010), "Crack classification in concrete based on acoustic emission", Constr. Build. Mater., 24, 2339-2346. https://doi.org/10.1016/j.conbuildmat.2010.05.004.   DOI
8 Pazdera, L., Topolar, L., Danek, P., Smutny, J. and Mikulasek, K. (2016), "Evaluation of acoustic emission events generated at three point bending of different concrete specimens by spectral analysis", Solid State Phenomena, 258, 485-488. https://doi.org/10.4028/www.scientific.net/SSP.258.485.   DOI
9 Pisani, A.M. (2018), "Behaviour under long-term loading of externally prestressed concrete beams", Eng. Struct., 160, 24-33. https://doi.org/10.1016/j.engstruct.2018.01.029.   DOI
10 Rodriguez, P. and Celestino, T.B. (2019), "Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks", Eng. Fract. Mech., 210, 54-69. https://doi.org/10.1016/j.engfracmech.2018.06.027.   DOI
11 Sagar, R.V. and Prasad, B.K.R. (2012), "A review of recent developments in parametric based acoustic emission techniques applied to concrete structures", Nondestr. Test. Eval., 27(1), 47-68. https://doi.org/10.1080/10589759.2011.589029.   DOI
12 Wang, Y., Zhang, Y., Hu, H., Liu, S. and Yuan, L. (2014), "Identification of damage degree of concrete by acoustic emission and artificial neural network", J. Build. Mater., 67(10), 1497-1497.
13 Wiedmann, A., Weise, F., Kotan, E., Muller, H.S. and Meng, B. (2017), "Effects of fatigue loading and alkali-silica reaction on the mechanical behavior of pavement concrete", Struct. Concrete, 18(4), 539-549. https://doi.org/10.1002/suco.201600179.   DOI
14 Xie, Z.D., Guan, Y.J., Yu, X.H., Zhu, L.H. and Lin, J. (2018), "Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation", J. Central South Univ., 25(7), 1545-1559.   DOI
15 Asamene, K., Hudson, L. and Sundaresan, M. (2015), "Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels", Ultrasonics, 59, 86-93. https://doi.org/10.1016/j.ultras.2015.01.016.   DOI
16 Xu, J., Barnes, R.W. and Ziehl, P.H. (2013), "Evaluation of prestressed concrete beams based on acoustic emission parameters", Mater. Eval., 71(2), 176-185.
17 Yuan, X., Li, B., Cui, G., Zhao, S. and Zhou, M. (2010), "Grey clustering theory to assess the effect of mineral admixtures on the cyclic sulfate resistance of concrete", J. Wuhan Univ. Technol., 25(2), 316-318.   DOI
18 Yuyama, S., Li, Z.W., Yoshizawa, M., Tomokiyo, T. and Uomoto, T. (2001), "Evaluation of fatigue damage in reinforced concrete slab by acoustic emission", NDT&E Int., 34(6), 381-387.   DOI
19 Abdelrahman, M.A., ElBatanouny, M.K., Rose, J.R. and Ziehl, P.H. (2019), "Signal processing techniques for filtering acoustic emission data in prestressed concrete", Res. Nondestr. Eval., 30(3), 127-148. https://doi.org/10.1080/09349847.2018.1426800.   DOI
20 Abouhussien, A.A. and Hassan, A.A.A. (2015), "Evaluation of damage progression in concrete structures due to reinforcing steel corrosion using acoustic emission monitoring", J. Civil Struct. Hlth Monit., 5(5), 751-765. https://doi.org/10.1007/s13349-015-0144-5.   DOI
21 Barrios, F. and Ziehl, P.H. (2012), "Cyclic load testing for integrity evaluation of prestressed concrete girders", ACI Struct. J., 109(5), 615-623.
22 Behnia, A., Chai, H.K. and Shiotani, T. (2014), "Advanced structural health monitoring of concrete structures with the aid of acoustic emission", Constr. Build. Mater., 65(65), 282-302. https://doi.org/10.1016/j.conbuildmat.2014.04.103.   DOI
23 Carpinteri, A., Lacidogna, G., Niccolini, G. and Puzzi, S. (2008), "Critical defect size distributions in concrete structures detected by the acoustic emission technique", Meccanica, 43(3), 349-363. https://doi.org/10.1007/s11012-007-9101-7.   DOI
24 Choi, C.K. and Cheung, S.H. (1994), "A simplified model for predicting the shear response of reinforced concrete membranes", Thin Wall. Struct., 19(1), 37-60. https://doi.org/10.1016/0263-8231(94)90004-3.   DOI
25 Choi, C.K. and Cheung, S.H. (1996), "Tension stiffening model for planar reinforced concrete members", Comput. Struct., 59(1), 179-190. https://doi.org/10.1016/0045-7949(95)00146-8.   DOI
26 Fu, C., Ye, H., Wang, K., Zhu, K. and He, C. (2019), "Evolution of mechanical properties of steel fiber-reinforced rubberized concrete (FR-RC)", Compos. Part B: Eng., 160, 158-166. https://doi.org/10.1016/j.compositesb.2018.10.045.   DOI
27 Chu, H.Q. and Jiang, L.H. (2009), "Correlation analysis between concrete parameters and electrodeposition effect based on grey theory", J. Wuhan Univ. Technol., 31(7), 22-26.
28 Desa, M.S.M., Ibrahim, M.H.W., Shahidan, S., Ghadzali, N.S. and Misri, Z. (2018), "Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review", IOP Conf. Ser.: Earth Environ. Sci., 140(1), 012142, April.   DOI
29 Di Benedetti, M., Loreto, G., Matta, F. and Nanni, A. (2013), "Acoustic emission monitoring of reinforced concrete under accelerated corrosion", J. Mater. Civil Eng., 25(8), 1022-1029. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000647.   DOI
30 Fan, X.Q., Hu, S.W. and Lu, J. (2016), "Damage and fracture processes of concrete using acoustic emission parameters", Comput. Concrete, 18(2), 267-278. https://doi.org/10.12989/cac.2016.18.2.267.   DOI
31 Fu, C.Q., Jin, X.Y., Ye, H.L. and Jin, N.G. (2015), "Theoretical and experimental investigation of loading effects on chloride diffusion in saturated concrete", J. Adv. Concrete Technol., 13, 30-43. ttps://doi.org/10.3151/jact.13.30.   DOI
32 Huo, L.S., Li, X., Chen, D.D. and Li, H.N. (2017), "Structural health monitoring using piezoceramic transducers as strain gauges and acoustic emission sensors simultaneously", Comput. Concrete, 20(5), 595-603. https://doi.org/10.12989/cac.2017.20.5.595.   DOI
33 Zohari, M.H., Epaarachchi, J.A. and Lau, K.T. (2013), "Modal acoustic emission investigation for progressive failure monitoring in thin composite plates under tensile test", Key Eng. Mater., 558, 65-75. https://doi.org/10.4028/www.scientific.net/KEM.558.65   DOI
34 Iturrioz, I., Lacidogna, G. and Carpinteri, A. (2013), "Acoustic emission detection in concrete specimens: experimental analysis and simulations by a lattice model", Int. J. Damage Mech., 23(3), 327-358. https://doi.org/10.1177/1056789513494232.   DOI
35 Jiang, G., Keller, J., Bond, P.L. and Yuan, Z. (2016), "Predicting concrete corrosion of sewers using artificial neural network", Water Res., 92, 52-60. https://doi.org/10.1016/j.watres.2016.01.029.   DOI
36 Zhai, W., Li, J. and Zhou, Y. (2019), "Application of catastrophe theory to fracability evaluation of deep shale reservoir", Arab. J. Geosci., 12, 161. https://doi.org/10.1007/s12517-019-4332-1.   DOI
37 Zhou, X., Yang, Y.Y., Li, X.Q. and Zhao, G.Q. (2016), "Acoustic emission characterization of the fracture process in steel fiber reinforced concrete", Comput. Concrete, 18(4), 923-936. https://doi.org/10.12989/cac.2016.18.4.923.   DOI