• Title/Summary/Keyword: modal 방법

Search Result 469, Processing Time 0.025 seconds

comparative Study of Analytical Modal Properties of Instrumentation Cabinet of Nuclear Power Plant (모델링 방법의 차이에 따른 원전계측캐비넷의 동특성 해석 결과 비교분석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.186-192
    • /
    • 1999
  • Safety-related equipments of nuclear power plant must be seismically qualified to demonstrate their ability to function as required during and/or after the earthquake, The seismic qualification is usually achieved through analysis and testing. Analysis method is preferably adopted for structurally simple equipments which are easy to be mathematically modeled. However even for relatively complex equipments analysis method is occasionally used for computing the input motion or supporting information for the component test followed. Electrical cabinet is a typical example for which analysis method is combinedly used with test to get modal properties of the enclosing cabinet structure. Usually the structural elements and doors of the cabinet are loosely interconnected with small-size bolts or spot welding. Therefore cabinet-type equipment usually has high and complex nonlinear properties which are not easily idealized by simple practical modeling techniques. in this paper with respect to a typical cabinet-type structure(instrumentation cabinet of nuclear power plant) a comparative study has been performed between three different state-of-the -art modeling techniques: lumped mass model frame model and FEM modal. Form the study results it has been found that modal properties of the cabinet-type structure in the elastic behavior range can be reasonably computed through any type of modeling techniques in the practice with slight modification of model properties to get better accuracy. However it needs additional modeling techniques to get reasonable results up to nonlinear range.

  • PDF

Emotion Recognition Algorithm Based on Minimum Classification Error incorporating Multi-modal System (최소 분류 오차 기법과 멀티 모달 시스템을 이용한 감정 인식 알고리즘)

  • Lee, Kye-Hwan;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.76-81
    • /
    • 2009
  • We propose an effective emotion recognition algorithm based on the minimum classification error (MCE) incorporating multi-modal system The emotion recognition is performed based on a Gaussian mixture model (GMM) based on MCE method employing on log-likelihood. In particular, the reposed technique is based on the fusion of feature vectors based on voice signal and galvanic skin response (GSR) from the body sensor. The experimental results indicate that performance of the proposal approach based on MCE incorporating the multi-modal system outperforms the conventional approach.

Moving Load Analysis of Bridge Structures Using Experimental Modal Data (실험적 모우드 계수를 이용한 교량의 주행하중 해석)

  • 이형진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.409-420
    • /
    • 2002
  • This paper proposed a technique of structural re-analysis for the evaluation of dynamic responses of bridge structure under moving loads using experimental modal results. For successful structural re-analysis, it is required to have accurate estimation techniques of the modal characteristics of bridge structures. The natural frequencies and mode shapes were identified by direct fourier analysis techniques and damping ratios by the random decrement method, respectively. An interpolation method was also proposed for the extension of mode shape measured on limited DOFs. Second, the structural reanalysis was performed using moving mass model and identified modal parameters. The results from the reanalysis show that the proposed technique is very reasonable to evaluate the actual behavior of bridge structures under moving loads.

Implementation of the Perception Process in Human‐Vehicle Interactive Models(HVIMs) Considering the Effects of Auditory Peripheral Cues (청각 주변 자극의 효과를 고려한 효율적 차량-운전자 상호 연동 모델 구현 방법론)

  • Rah, Chong-Kwan;Park, Min-Yong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.67-75
    • /
    • 2006
  • HVIMs consists of simulated driver models implemented with series of mathematical functions and computerized vehicle dynamic models. To effectively model the perception process, as a part of driver models, psychophysical nonlinearity should be considered not only for the single-modal stimulus but for the stimulus of multiple modalities and interactions among them. A series of human factors experiments were conducted using the primary sensory of visual and auditory modalities to find out the effects of auditory cues in visual velocity estimation tasks. The variations of auditory cues were found to enhance/reduce the perceived intensity of velocity as the level changed. These results indicate that the conventional psychophysical power functions could not applied for the perception process of the HVIMs with multi-modal stimuli. 'Ruled surfaces' in a 3-D coordinate system(with the intensities of both kinds of stimuli and the ratio of enhancement, respectively for each coordinate) were suggested to model the realistic perception process of multi-modal HVIMs.

On the Use of Modal Derivatives for Reduced Order Modeling of a Geometrically Nonlinear Beam (모드 미분을 이용한 기하비선형 보의 축소 모델)

  • Jeong, Yong-Min;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • The structures, which are made up with the huge number of degrees-of-freedom and the assembly of substructures, have a great complexity. In order to increase the computational efficiency, the analysis models have to be simplified. Many substructuring techniques have been developed to simplify large-scale engineering problems. The techniques are very powerful for solving nonlinear problems which require many iterative calculations. In this paper, a modal derivatives-based model order reduction method, which is able to capture the stretching-bending coupling behavior in geometrically nonlinear systems, is adopted and investigated for its performance evaluation. The quadratic terms in nonlinear beam theory, such as Green-Lagrange strains, can be explained by the modal derivatives. They can be obtained by taking the modal directional derivatives of eigenmodes and form the second order terms of modal reduction basis. The method proposed is then applied to a co-rotational finite element formulation that is well-suited for geometrically nonlinear problems. Numerical results reveal that the end-shortening effect is very important, in which a conventional modal reduction method does not work unless the full model is used. It is demonstrated that the modal derivative approach yields the best compromised result and is very promising for substructuring large-scale geometrically nonlinear problems.

The Study of Wavefront Aberration Reconstruction for Optical System (광학계의 파면수차 재구성에 대한 연구)

  • Park, Seong-Jong;Ju, Seok-Hee;Kim, Sung-Gyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.10 no.4
    • /
    • pp.357-364
    • /
    • 2005
  • To develope the assessment equpiments of an optical system using adaptive optics, we developed the program of wavefront reconstruction for an optical system like eye. We used matlab in order to program the wavefront reconstruction for an optical system and presented the wavefront function of optical system by the zemike polynomials using modal method. To test the developed program, we calculated the zemike coefficient(n=7) of cooke triplet using code V, and compared the wavefront shape and the zemike polynomials using code V to those using the developed program. In this case, the used zemike coefficients were n=2, 3, 4, 5, 6, 7, 8, 9, and 10 and the number of sub-aperture were 1,253. From these results, we know that the reconstructed wavefronts were similar to the wavefront of cooke triplet as n was the larger than 4 and the zemike coefficient was equal to that of cooke triplet as n was 7. The developed program is able to be applied to the core technology to develope the assessment equipment of an optical system using the adaptive optics.

  • PDF

Structural Modal Analysis Using Substructure Hybrid Interface Modes (혼합경계의 부분구조 모드를 이용한 구조물의 모드해석)

  • 김형근;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1138-1149
    • /
    • 1993
  • A new mode synthesis method using Lagrange multipliers and substructure hybrid interface modes is presented. Substruture governing equations of motion are derived using Lagrange equations and the constraints of geometric compatibility between the substructures are treated with Lagrange multipliers. Fixed, free, and loaded interface modes can be employed for the modal bases of each substructure. In cases of the fixed and loaded interface modes, two successive modal transformation relations are used. Compared with the conventional mode synthesis methods, the suggested method does not construct the equations of motion of the coupled structure and the final characteristic equation becomes a polynomial. Only modal parameters of each substructure and geometric compatibility conditions are needed. The suggested method is applied to a simple lumped mass model and parametric study is performed.

A Study on the Prediction of the Mechanical Properties of Printed Circuit Boards Using Modal Parameters (모달 파라미터 정보를 활용한 PCB 물성 예측에 관한 연구)

  • Choo, Jeong Hwan;Jung, Hyun Bum;Hong, Sang Ryel;Kim, Yong Kap;Kim, Jae San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.421-426
    • /
    • 2017
  • In this study, we propose a method for predicting the mechanical properties of the printed circuit board (PCB) that has transversely isotropic characteristics. Unlike the isotropic material, there is no specific test standard for acquisition of the transversely isotropic properties. In addition, common material test methods are not readily applicable to that type of laminated thin plate. Utilizing the natural frequency obtained by a modal test and the sizing optimization technique provided in $OptiStruct^{(R)}$, the mechanical properties of a PCB were derived to minimize the difference between test and analysis results. In addition, the validity of the predicted mechanical properties was confirmed by the MAC (Modal Assurance Criteria) value of each of the compared mode shapes. This proposed approach is expected to be extended to the structural analysis for the design verification of the top product that includes a PCB.

Modal Analysis of a Large Truss for Structural Integrity (건전성 평가를 위한 대형 트러스 구조물의 모드분석)

  • Park, Soo-Yong
    • Journal of Navigation and Port Research
    • /
    • v.32 no.3
    • /
    • pp.215-221
    • /
    • 2008
  • Dynamic characteristics of a structure, i.e., natural frequency and mode shape, have been widely using as an input data in the area of structural integrity or health monitoring which combined with the damage evaluation and structural system identification techniques. It is very difficult, however, to get those information by the conventional modal analysis method from large structures, such as the offshore structure or the long-span bridge, since the source of vibration is not available. In this paper, a method to obtain the frequencies and the mode shapes of a large span truss structure using only acceleration responses is studied. The calculation procedures to obtain acceleration responses and frequency response functions are provided utilizing a numerical model of the truss, and the process to extract natural frequencies and mode shapes from the modal analysis is cleary explained. The extracted mode shapes by proposed method are compared with those from eigenvalue analysis for the estimation of accuracy. The validity of the mode shapes is also demonstrated using an existing damage detection technique for the truss structure by simulated damage cases.

Seismic Fragility Analysis of Multi-Modes Structures Considering Modal Contribution Factor (모드기여도를 고려한 복수모드구조물의 지진취약도분석)

  • 조양희;조성국
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.15-22
    • /
    • 2002
  • In the course of seismic probabilistic risk assessment(SPRA), seismic fragility analysis(SFA) is utilized as a tool to evaluate the actual seismic capacity of structures. This paper introduces a methodology of SFA and its evaluation procedures, especially focusing on the basic fragility variables. A new definition of the response spectrum shape factor as one of the most critical basic variables is suggested. The new factor is expressed as a term of linear algebraic sum using the modal contribution factor. The efficiency of new response spectrum shape factor is evaluated and validated to use in practice through the case study of the nuclear power plant structures. The case study results show that the proposed method can be effectively applicable to multi-mode structures with composite modal damping.