• Title/Summary/Keyword: mixed-model production

Search Result 241, Processing Time 0.026 seconds

Experimental Study of New Welding Assembly Technology Applied with Mixed-Model Production Method (혼류생산 방식을 적용한 신개념 용접조립 기술 연구)

  • Park, Dong Hwan;Gu, Ja Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.602-608
    • /
    • 2014
  • Mixed-model production lines are often used in manufacturing systems. In production lines, different product types are simultaneously manufactured by processing small batches. This paper describes a new welding assembly technology involving the development of experimental models for a mixed-model production line in an automobile company. Due to the extensive number of models, the design of a welding assembly system is complicated. Performance evaluation is an important phase in the design of welding assembly lines in a mixed-model production environment. In this study, a new welding assembly technology for a mixed-model production method was used to weld the package tray and dash panel of a vehicle.

Experimental Study on Mixed-Model Production of Stator and Rotor using Motor Core Laminated Stamping Die Technology for Attaching and Detaching Cam (Cam 착탈 방식의 모터코어 적층금형 기술을 적용한 Stator와 Rotor의 다종 혼류 생산에 대한 연구)

  • Park, D.H.;Hwang, P.J.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.240-245
    • /
    • 2017
  • Mixed-model production technology is a method of producing multiple products with one production process and production line in order to reduce wasted manpower and adjust to market trends. In other words, mixed-model production is a flexible production system that changes production volume by model according to market demand. This study has developed a progressive laminated stamping die technology to enable flexible production of a motor core consisting of attaching and detaching the Cam on the back of the punch so that two kinds of stator and two kinds of rotor could be produced in one progressive die.

Model Grouping in a Mixed-model Assembly Line (조립생산 시스템에서의 혼합 모델 그룹화)

  • Kim, Yearn-Min;Seo, Yoon-Ho
    • IE interfaces
    • /
    • v.9 no.2
    • /
    • pp.39-45
    • /
    • 1996
  • This paper investigates the problems of grouping N products on an assembly line with an objective of maximizing the option grouping rate. Before developing a mixed model grouping algorithm, simulation studies are committed for developing operating rules and evaluating the layout production systems. A mixed model grouping algorithm is suggested and it is applied to the color selection lane in automobile production system, which reveals a high mixed model grouping rate.

  • PDF

A Sequencing Problem in Mixed-Model Assembly Line Including a Painting Line

  • Yoo, J.K.;Moriyama, T.;Shimizu, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1118-1122
    • /
    • 2005
  • In order to keep production balance at a mixed-model assembly line and a painting line, large WIP(Work- In-Process) inventories are required between two lines. To increase the efficiency of line handling through reducing the inventories under this circumstance, this paper concerns with a sequencing problem for a mixed-model assembly line that includes a painting line where the uncertain elements regarding the defective products exist. Then, we formulate a new type of the sequencing problem minimizing the line stoppage time and the idle time with forecasting the supply time of the products from the painting line. Finally, we examine the effectiveness of the proposed sequencing through computer simulations.

  • PDF

Development of Hierarchical Production Planning and Control System for Mixed-Model Assembly Manufacture-an Application in Refrigerator Factory (혼류 조립 공장을 위한 계층적 생산 계획 및 통제 시스템 개발 - 냉장고 공장 사례)

  • Shin, Hyun-Joon
    • IE interfaces
    • /
    • v.19 no.1
    • /
    • pp.34-42
    • /
    • 2006
  • This paper presents a scheme for a hierarchical production scheduling and control system for a refrigerator factory with mixed model assembly lines. The setting of the factory is as follows. There are three mixed-model assembly lines called main line A, B and C and two batch lines that supply parts to the main lines. For each of the main lines, three work-centers are dedicated to them. The sub-lines and work-centers produce parts in batch type. An incoming production order from the master planner is characterized by its product type, amount, and due date. Under this situation, the proposed scheme has several features to schedule and control the above mentioned factory; 1) select the starting time and the place (assembly line) for an order processing, 2) devise a way to control orders to be processed as scheduled, and 3) reschedule orders when something unexpected happen. Finally, this paper provides a case study where the proposed scheme is applied to.

Cyclic Sequencing in Mixed-Model Production Systems (혼류 생산시스템의 주기적 생산순서)

  • Choi, Wonjoon;Kim, Yearnmin;Park, Changkwon;Lee, Yongil
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.4
    • /
    • pp.317-327
    • /
    • 2004
  • In mixed-model production systems, various models of products are produced alternately on the same production line. When the total number of models or the total production quantity is large, it takes a long time to determine the production sequence of the products. In this paper, we will show that in case of product rate variation problem (PRV) problem with nonidentical symmetric convex discrepancy function, an optimum sequence can be obtained by repeating an optimum sequence in a reduced subproblem.

Development and Evaluation of a Simulation Model for Dairy Cattle Production Systems Integrated with Forage Crop Production

  • Kikuhara, K.;Kumagai, H.;Hirooka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.57-71
    • /
    • 2009
  • Crop-livestock mixed farming systems depend on the efficiency with which nutrients are conserved and recycled. Home-grown forage is used as animal feed and animal excretions are applied to cultivated crop lands as manure. The objective of this study was to develop a mixed farming system model for dairy cattle in Japan. The model consisted of four sub-models: the nutrient requirement model, based on the Japanese Feeding Standards to determine requirements for energy, crude protein, dry matter intake, calcium, phosphorus and vitamin A; the optimum diet formulation model for determining the optimum diets that satisfy nutrient requirements at lowest cost, using linear programming; the herd dynamic model to calculate the numbers of cows in each reproductive cycle; and the whole farm optimization model to evaluate whole farm management from economic and environmental viewpoints and to optimize strategies for the target farm or system. To examine the model' validity, its predictions were compared against best practices for dairy farm management. Sensitivity analyses indicated that higher yielding cows lead to better economic results but higher emvironmental load in dairy cattle systems integrated with forage crop production.

Kinetic Modeling of Submerged Culture of A. blazei with Mixed Carbon Sources of Glucose and Dextrin

  • Na Jeong-Geol;Kim Hyun-Han;Chang Yong-Keun;Lee Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1331-1337
    • /
    • 2006
  • A mathematical model has been proposed for the batch culture of Agaricus blazei with mixed carbon sources of glucose and dextrin. In the proposed model, the metabolism of A. blazei was divided into three parts: cell growth, exopolysaccharides (EPS) production, and another EPS production pathway activated by dextrin hydrolysis. Each pathway was described mathematically and incorporated into the mechanistic model structure. Batch cultures were carried out with six different carbon source compositions. Although parameters were estimated by using the experimental data from the two extreme cases such as glucose only and dextrin only, the model represented well the profiles of glucose, cell mass, and EPS concentrations for all the six different carbon source mixtures, showing a good interpolation capability. Of note, the lag in EPS production could be quite precisely predicted by assuming that the glucose-to-cell mass ratio was the governing factor for EPS production.

Scheduling for Mixed-Model Assembly Lines in JIT Production Systems (JIT 생산 시스템에서의 혼합모델 조립라인을 위한 일정계획)

  • Ro, In-Kyu;Kim, Joon-Seok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.83-94
    • /
    • 1991
  • This study is concerned with the scheduling problem for mixed-model assembly lines in Just-In-Time(JIT) production systems. The most important goal of the scheduling for the mixed-model assembly line in JIT production systems is to keep a constant rate of usage for every part used by the systems. In this study, we develop two heuristic algorithms able to keep a constant rate of usage for every part used by the systems in the single-level and the multi-level. In the single-level, the new algorithm generates sequence schedule by backward tracking and prevents the destruction of sequence schedule which is the weakest point of Miltenburg's algorithms. The new algorithm gives better results in total variations than the Miltenburg's algorithms. In the multi-level, the new algorithm extends the concept of the single-level algorithm and shows more efficient results in total variations than Miltenburg and Sinnamon's algorithms.

  • PDF

Kinetic Study of pH Effects on Biological Hydrogen Production by a Mixed Culture

  • Jun, Yoon-Sun;Yu, Seung-Ho;Ryu, Keun-Garp;Lee, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1130-1135
    • /
    • 2008
  • The effect of pH on anaerobic hydrogen production was investigated under various pH conditions ranging from pH 3 to 10. When the modified Gompertz equation was applied to the statistical analysis of the experimental data, the hydrogen production potential and specific hydrogen production rate at pH 5 were 1,182 ml and 112.5 ml/g biomass-h, respectively. In this experiment, the maximum theoretical hydrogen conversion ratio was 22.56%. The Haldane equation model was used to find the optimum pH for hydrogen production and the maximum specific hydrogen production rate. The optimum pH predicted by this model is 5.5 and the maximum specific hydrogen production rate is 119.6 ml/g VSS-h. These data fit well with the experimented data($r^2=0.98$).