Browse > Article

Kinetic Study of pH Effects on Biological Hydrogen Production by a Mixed Culture  

Jun, Yoon-Sun (Department of Environmental Engineering, Seoul National University)
Yu, Seung-Ho (Environmental Conservation Division, Korea Atomic Energy Research Institute)
Ryu, Keun-Garp (Department of Chemical Engineering and Bioengineering, University of Ulsan)
Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.6, 2008 , pp. 1130-1135 More about this Journal
Abstract
The effect of pH on anaerobic hydrogen production was investigated under various pH conditions ranging from pH 3 to 10. When the modified Gompertz equation was applied to the statistical analysis of the experimental data, the hydrogen production potential and specific hydrogen production rate at pH 5 were 1,182 ml and 112.5 ml/g biomass-h, respectively. In this experiment, the maximum theoretical hydrogen conversion ratio was 22.56%. The Haldane equation model was used to find the optimum pH for hydrogen production and the maximum specific hydrogen production rate. The optimum pH predicted by this model is 5.5 and the maximum specific hydrogen production rate is 119.6 ml/g VSS-h. These data fit well with the experimented data($r^2=0.98$).
Keywords
Hydrogen production; kinetics; mixed culture; pH effects;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Baek, J., E. Choi, Y. Yun, S. Kim, and M. Kim. 2006. Comparison of hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: Hydrogenases of C. butyricum and T. roseopersicina. J. Microbiol. Biotechnol. 16: 1210-1215   과학기술학회마을
2 Chen, C. C., C. Y. Lin, and M. C. Lin. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol. 58: 224-228   DOI   ScienceOn
3 Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol. 58: 1233-1239
4 Hallenbeck, P. and J. R. Benemann. 2002. Biological hydrogen production: Fundamentals and limiting processes. Int. J. Hydrogen Energy 27: 1185-1194   DOI   ScienceOn
5 Leclerc, M., A. Bernalier, G. Donadille, and M. Lelait. 1997. $H_2/CO_2$ metabolism in acetogenic bacteria isolated from the human colon. Anaerobe 3: 307-315   DOI   ScienceOn
6 Lee, Y. J., T. Miyahara, and T. Noike. 2002. Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol. 77: 694-698   DOI   ScienceOn
7 Mizno, O., T. Ohara, M. Shinya, and T. Noike. 2000. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci. Technol. 42: 345-350
8 Sim, S. J., T. Gong, M. S. Kim, and T. H. Park. 2005. Dark hydrogen production by a green microalgae, Chlamydomonas reinhardtii UTEX90. J. Microbiol. Biotechnol. 15: 1159-1163   과학기술학회마을
9 Tang, I. C., M. R. Okos, and S. T. Yang. 1989. Effect of pH and acetic acid on homoacetic fermentation of lactate by Clostridium formicoaceticum. Biotechnol. Bioeng. 34: 1063- 1074   DOI
10 Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological process: A survey of literature. Int. J. Hydrogen Energy 26: 13-28   DOI   ScienceOn
11 Nandi, R. and S. Sengupta. 1998. Microbial production of hydrogen: An overview. Crit. Rev. Microbiol. 24: 61-64
12 Seo, K., D. H. Chung, M. Kim, K. Lee, K. Kim, G. Bahk, D. Bae, K. Kim, C. Kim, and S. Ha. 2007. Development of predictive mathematical model for the growth kinetics of Staphylococcus aureus by response surface model. J. Microbiol. Biotechnol. 17: 1437-1444   과학기술학회마을
13 Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68: 269-278   DOI   ScienceOn
14 Okamoto, M., T. Miyahara, O. Mizno, and T. Noike. 2000. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci. Technol. 41: 25-32
15 Boyles, D. 1984. Bio-energy Technology Thermodynamics and Costs, pp. 8-13. Wiley & Sons, New York
16 Nath, K. and D. Das. 2004. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 65: 520-529
17 Noike, T. and O. Mizno. 2000. Hydrogen fermentation of organic municipal wastes. Water Sci. Technol. 42: 155-162
18 Antoniou, P., J. Hamilton, B. Koopman, R. Jain, B. Holloway, G. Lyberatos, and S. A. Svoronos. 1990. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Wat. Res. 24: 97-101   DOI   ScienceOn
19 Mayo, A. W. and T. Noike. 1994. Response of mixed culture of Chlorella vulgaris and heterotrophic bacteria to variation of pH. Wat. Sci. Technol. 30: 285-294
20 Morvan, B., F. Rieu-Lesme, G. Fonty, and P. Gouet. 1996. In vitro interactions between rumen H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe 2: 175-180   DOI   ScienceOn
21 Shin, D., A. Yoo, S. W. Kim, and D. R. Yang. 2006. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. J. Microbiol. Biotechnol. 16: 1355-1361   과학기술학회마을
22 Mizno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. 2000. Enhancement of hydrogen production from nitrogen gas sparging. Bioresource Technol. 73: 59-65   DOI   ScienceOn
23 Gavala, H. N., I. V. Skiadas, and B. K. Ahring. 2006. Biological hydrogen production in suspended and attached growth anaerobic reactor system. Int. J. Hydrogen Energy 31: 1164-1175   DOI   ScienceOn
24 Pedro, M. S., S. Haruta, M. Hazaka, R. Shimada, C. Yoshida, K. Hiura, M. Ishii, and Y. Igarashi. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from fieldscale composter. J. Biosci. Bioeng. 91: 159-165   DOI
25 APHA. 2002. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington D.C
26 Logan, B. E., S. E. Oh, I. S. Kim, and S. V. Ginkel. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36: 2530-2535   DOI   ScienceOn
27 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356   DOI
28 Kim, E., S. B. Yoo, M. S. Kim, and J. K. Lee. 2005. Improvement of photoheterotrophic hydrogen production of Rhodobacter sphaeroides by removal of B800-850 light-harvesting complex. J. Microbiol. Biotechnol. 15: 1115-1119   과학기술학회마을
29 Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy. 2002. Sustainable fermentative hydrogen production: Challenges for process optimization. Int. J. Hydrogen Energy 27: 1339-1347   DOI   ScienceOn
30 van Niel, E. W. J., P. A. M. Claassen, and A. J. M. Stams. 2003. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 81: 255-262   DOI   ScienceOn
31 Sparling, R., D. Risbey, and H. M. Poggi-Varaldo. 1997. Hydrogen production from inhibited anaerobic composters. Int. J. Hydrogen Energy 22: 563-566   DOI   ScienceOn