References
- Antoniou, P., J. Hamilton, B. Koopman, R. Jain, B. Holloway, G. Lyberatos, and S. A. Svoronos. 1990. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Wat. Res. 24: 97-101 https://doi.org/10.1016/0043-1354(90)90070-M
- APHA. 2002. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington D.C
- Baek, J., E. Choi, Y. Yun, S. Kim, and M. Kim. 2006. Comparison of hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: Hydrogenases of C. butyricum and T. roseopersicina. J. Microbiol. Biotechnol. 16: 1210-1215
- Boyles, D. 1984. Bio-energy Technology Thermodynamics and Costs, pp. 8-13. Wiley & Sons, New York
- Chen, C. C., C. Y. Lin, and M. C. Lin. 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol. 58: 224-228 https://doi.org/10.1007/s002530100814
- Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Appl. Environ. Microbiol. 58: 1233-1239
- Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological process: A survey of literature. Int. J. Hydrogen Energy 26: 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
- Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 https://doi.org/10.1021/ac60111a017
- Gavala, H. N., I. V. Skiadas, and B. K. Ahring. 2006. Biological hydrogen production in suspended and attached growth anaerobic reactor system. Int. J. Hydrogen Energy 31: 1164-1175 https://doi.org/10.1016/j.ijhydene.2005.09.009
- Hallenbeck, P. and J. R. Benemann. 2002. Biological hydrogen production: Fundamentals and limiting processes. Int. J. Hydrogen Energy 27: 1185-1194 https://doi.org/10.1016/S0360-3199(02)00131-3
- Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy. 2002. Sustainable fermentative hydrogen production: Challenges for process optimization. Int. J. Hydrogen Energy 27: 1339-1347 https://doi.org/10.1016/S0360-3199(02)00090-3
- Kim, E., S. B. Yoo, M. S. Kim, and J. K. Lee. 2005. Improvement of photoheterotrophic hydrogen production of Rhodobacter sphaeroides by removal of B800-850 light-harvesting complex. J. Microbiol. Biotechnol. 15: 1115-1119
- Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 68: 269-278 https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<269::AID-BIT5>3.0.CO;2-T
-
Leclerc, M., A. Bernalier, G. Donadille, and M. Lelait. 1997.
$H_2/CO_2$ metabolism in acetogenic bacteria isolated from the human colon. Anaerobe 3: 307-315 https://doi.org/10.1006/anae.1997.0117 - Lee, Y. J., T. Miyahara, and T. Noike. 2002. Effect of pH on microbial hydrogen fermentation. J. Chem. Technol. Biotechnol. 77: 694-698 https://doi.org/10.1002/jctb.623
- Logan, B. E., S. E. Oh, I. S. Kim, and S. V. Ginkel. 2002. Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36: 2530-2535 https://doi.org/10.1021/es015783i
- Mayo, A. W. and T. Noike. 1994. Response of mixed culture of Chlorella vulgaris and heterotrophic bacteria to variation of pH. Wat. Sci. Technol. 30: 285-294
- Mizno, O., T. Ohara, M. Shinya, and T. Noike. 2000. Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci. Technol. 42: 345-350
- Mizno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. 2000. Enhancement of hydrogen production from nitrogen gas sparging. Bioresource Technol. 73: 59-65 https://doi.org/10.1016/S0960-8524(99)00130-3
- Morvan, B., F. Rieu-Lesme, G. Fonty, and P. Gouet. 1996. In vitro interactions between rumen H2-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe 2: 175-180 https://doi.org/10.1006/anae.1996.0023
- Nandi, R. and S. Sengupta. 1998. Microbial production of hydrogen: An overview. Crit. Rev. Microbiol. 24: 61-64
- Nath, K. and D. Das. 2004. Improvement of fermentative hydrogen production: Various approaches. Appl. Microbiol. Biotechnol. 65: 520-529
- Noike, T. and O. Mizno. 2000. Hydrogen fermentation of organic municipal wastes. Water Sci. Technol. 42: 155-162
- Okamoto, M., T. Miyahara, O. Mizno, and T. Noike. 2000. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci. Technol. 41: 25-32
- Pedro, M. S., S. Haruta, M. Hazaka, R. Shimada, C. Yoshida, K. Hiura, M. Ishii, and Y. Igarashi. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from fieldscale composter. J. Biosci. Bioeng. 91: 159-165 https://doi.org/10.1016/S1389-1723(01)80059-1
- Seo, K., D. H. Chung, M. Kim, K. Lee, K. Kim, G. Bahk, D. Bae, K. Kim, C. Kim, and S. Ha. 2007. Development of predictive mathematical model for the growth kinetics of Staphylococcus aureus by response surface model. J. Microbiol. Biotechnol. 17: 1437-1444
- Shin, D., A. Yoo, S. W. Kim, and D. R. Yang. 2006. Cybernetic modeling of simultaneous saccharification and fermentation for ethanol production from steam-exploded wood with Brettanomyces custersii. J. Microbiol. Biotechnol. 16: 1355-1361
- Sim, S. J., T. Gong, M. S. Kim, and T. H. Park. 2005. Dark hydrogen production by a green microalgae, Chlamydomonas reinhardtii UTEX90. J. Microbiol. Biotechnol. 15: 1159-1163
- Sparling, R., D. Risbey, and H. M. Poggi-Varaldo. 1997. Hydrogen production from inhibited anaerobic composters. Int. J. Hydrogen Energy 22: 563-566 https://doi.org/10.1016/S0360-3199(96)00137-1
- Tang, I. C., M. R. Okos, and S. T. Yang. 1989. Effect of pH and acetic acid on homoacetic fermentation of lactate by Clostridium formicoaceticum. Biotechnol. Bioeng. 34: 1063- 1074 https://doi.org/10.1002/bit.260340807
- van Niel, E. W. J., P. A. M. Claassen, and A. J. M. Stams. 2003. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 81: 255-262 https://doi.org/10.1002/bit.10463